table of isotopes small nuclei
play

Table of Isotopes (small nuclei) 9 17 F 18 F 19 F 20 F 21 F 22 F 23 - PowerPoint PPT Presentation

Table of Isotopes (small nuclei) 9 17 F 18 F 19 F 20 F 21 F 22 F 23 F 24 F 25 F 26 F 27 F 29 F 31 F On the production of energy and helium 8 13 O 14 O 15 O 16 O 17 O 18 O 19 O 20 O 21 O 22 O 23 O 24 O 26 O in low energy nuclear reactions 12 N 13


  1. Table of Isotopes (small nuclei) 9 17 F 18 F 19 F 20 F 21 F 22 F 23 F 24 F 25 F 26 F 27 F 29 F 31 F On the production of energy and helium 8 13 O 14 O 15 O 16 O 17 O 18 O 19 O 20 O 21 O 22 O 23 O 24 O 26 O in low energy nuclear reactions 12 N 13 N 14 N 15 N 16 N 17 N 18 N 19 N 20 N 21 N 22 N 23 N 7 9 C 10 C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 18 C 19 C 20 C 22 C Proton number 6 8 B 10 B 11 B 12 B 13 B 14 B 15 B 17 B 19 B 21 B 5 4 7 Be 9 Be 10 Be 11 Be 12 Be 14 Be 16 Be John C. Fisher 3 6 Li 7 Li 8 Li 9 Li 11 Li 3 He 4 He 6 He 8 He 10 He 2 Carpinteria, CA 1 H 2 H 3 H 5 H 1 1 n 4 n 0 ACS, March 22, 2010 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Neutron number Table of Isotopes (including hypothetical neutron isotopes) Full table of isotopes 120 17 F 18 F 19 F 20 F 21 F 22 F 23 F 24 F 25 F 26 F 27 F 29 F 31 F 9 8 13 O 14 O 15 O 16 O 17 O 18 O 19 O 20 O 21 O 22 O 23 O 24 O 100 7 12 N 13 N 14 N 15 N 16 N 17 N 18 N 19 N 20 N 21 N 22 N 23 N 6 9 C 10 C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 18 C 19 C 20 C 22 C Proton number Charged isotopes 8 B 10 B 11 B 12 B 13 B 14 B 15 B 17 B 19 B 80 5 Proton number 7 Be 9 Be 10 Be 11 Be 12 Be 14 Be 4 3 6 Li 7 Li 8 Li 9 Li 11 Li 60 2 3 He 4 He 6 He 8 He 1 1 H 2 H 3 H 40 1 n 4 n 5 n 6 n 7 n 8 n 9 n 10 n 11 n 12 n 13 n 14 n 15 n 16 n 17 n 18 n 19 n 20 n 21 n 22 n 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 20 Neutron number Neutron isotopes 0 0 50 100 150 Neutron number

  2. Question: How could you detect neutron isotopes? Liquid-drop model ◮ From their decay and reaction products ◮ Suppose that neutrons in a neutron isotope are bound about 1/2 as strongly as they are in an ordinary charged isotope. ◮ These depend on how strongly isotopes are bound ◮ The volumetric neutron isotope mass excess then would be ◮ We need a model ∆( A n) ≈ 8 . 071A − 7A ≈ A ◮ We need also a surface energy proportional to A 2 / 3 . ◮ Hypothesize: A 2 / 3 . ◮ Now we have the hypothetical neutron isotope mass excess ∆( A n) = A + A 2 / 3 Neutron isotope detection by radioactive decay Alpha particle shower (exothermic ββα ) Etch pits on a detector chip in air under a nickel cathode (Oriani) ◮ 200 n − → 196 n + 4 He ◮ 196 n − → 192 n + 4 He ◮ 192 n − → 188 n + 4 He ◮ And so on. A neutron isotope decays by emitting a series of energetic alpha particles. Overall: 200 n − → 50( 4 He) ◮ ◮ We can detect the alpha particles.

  3. The Oriani shower Full table of isotopes ◮ 63 pits 120 ◮ about 200 alphas in full 4 π shower 80 ◮ about 800 neutrons in parent neutron isotope 40 0 0 200 400 600 800 ◮ Consistent with decay mode Neutron number ◮ Consistent with large neutron isotopes ◮ Consistent with helium production Neutron isotope detection by growth reactions Neutron isotope detection by lithium-6 reactions ◮ Isotope growth (deuterium fuel) Isotope growth 2 H + A n → A+1 n + 1 H 6 Li + A n → A+1 n + 5 Li − − 2 H + A+1 n − → A+2 n + 1 H 6 Li + A+1 n − → A+2 n + 5 Li 2 H + A+2 n − → A+3 n + 1 H 6 Li + A+2 n − → A+3 n + 5 Li 2 H + A+3 n − → A+4 n + 1 H 6 Li + A+3 n − → A+4 n + 5 Li ◮ Neutron isotope growth is accompanied by emission of Isotope decay energetic protons. A+4 n − → A n + 4 He ◮ Isotope decay also occurs Overall (steady state) A+4 n − → A n + 4 He 4( 6 Li) − → 4( 5 Li) + 4 He ◮ Overall (steady state) → 4( 1 H) + 5( 4 He) + 14MeV − 4( 2 H) − → 4( 1 H) + 4 He + 20MeV

  4. Neutron isotope detection by lithium-7 reactions Some useful things to study ◮ Energetic protons and alphas Isotope growth ◮ Explore basic reactions 7 Li + A n → A+2 n + 5 Li − ◮ Helium and heat 7 H + A+2 n − → A+4 n + 5 Li ◮ Identify and quantify nuclear fuels Isotope decay ◮ Transmutation (more expensive) A+4 n − → A n + 4 He ◮ Confirm and extend reaction dynamics Overall (steady state) 2( 7 Li) − → 2( 5 Li) + 4 He → 2( 1 H) + 3( 4 He) + 7MeV − Helium and heat Comments on neutron isotopes ◮ For theoreticians Steady state reactions for selected fuel isotopes ◮ Ordinary nuclear physics with more isotopes 2 H: 4( 2 H) − → 4( 1 H) + 4 He + 20MeV ◮ For experimenters 6 Li: 4( 6 Li) − → 4( 1 H) + 5( 4 He) + 14MeV ◮ Opportunity for fundamental research 7 Li: 2( 7 Li) − → 2( 1 H) + 3( 4 He) + 7MeV ◮ For entrepreneurs 9 Be: 4( 9 Be) − → 9( 4 He) + 23MeV ◮ It’s risky to ignore lithium and beryllium and other fuels 13 C: 4( 13 C) − → 4( 12 C) + 4 He + 9MeV 17 O: 4( 17 O) − → 4( 16 O) + 4 He + 12MeV 18 O: 2( 18 O) − → 2( 16 O) + 4 He + 5MeV 232 Th: Complex, ambiguous, 238 U: not worked out.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend