part iv three nucleon forces to nuclei
play

Part IV: Three-Nucleon Forces to Nuclei To understand the properties - PowerPoint PPT Presentation

Part IV: Three-Nucleon Forces to Nuclei To understand the properties of complex nuclei from first principles Three-Nucleon Forces a b c Basic ideas why needed? 3N from chiral EFT Implementing in shell model Relation to monopoles


  1. Part IV: Three-Nucleon Forces to Nuclei To understand the properties of complex nuclei from first principles Three-Nucleon Forces a b c Basic ideas – why needed? 3N from chiral EFT Implementing in shell model Relation to monopoles Predictions/new discoveries Connections beyond structure How will we approach this problem: QCD à à NN (3N) forces à à Renormalize à à “Solve” many-body problem à à Predictions

  2. Chiral Effective Field Theory: Nuclear Forces Nucleons interact via pion exchanges and contact interactions Consistent treatment of NN, 3N,… NN couplings fit to scattering data Δ (1232) Weinberg, van Kolck, Kaplan, Savage, Wise

  3. Chiral EFT: N 2 LO 3N First non-vanishing 3N contributions: Next-to-next-to-leading order ν = 3 2 � 3 � = g A � � 1 · q � 1 � � 3 · q � 3 2 2 �� � 1 · � 3 � − 4 c 1 M � V 3 N 2 + M � 2 + M � 4 2 �� q 3 � q 1 8 F � � 3 � + c 4 � 1 � � 3 · � 2 q � 2 � � 1 � q � 3 · � + 2 c 3 q � 1 · q � � 3 · q � 3 + 1 − g A D � 3 2 � 1 · � 3 � � 1 · q 2 E � 2 · � 3 , 2 + M � 2 8 F � q 3

  4. Chiral EFT: N 2 LO 3N First non-vanishing 3N contributions: Next-to-next-to-leading order ν = 3 2 � 3 � = g A � � 1 · q � 1 � � 3 · q � 3 2 2 �� � 1 · � 3 � − 4 c 1 M � V 3 N 2 + M � 2 + M � 4 2 �� q 3 � q 1 8 F � � 3 � + c 4 � 1 � � 3 · � 2 q � 2 � � 1 � q � 3 · � + 2 c 3 q � 1 · q � � 3 · q � 3 + 1 − g A D � 3 2 � 1 · � 3 � � 1 · q 2 E � 2 · � 3 , 2 + M � 2 8 F � q 3 Three undetermined π N couplings from NN fit

  5. Chiral EFT: N 3 LO 3N Next-to-next-to-next-to-leading order ν = 4 Good news: no new constants Bad news: well, there’s all this

  6. Aside: Effects of Adding Explicit Deltas ������������� �������������������������������� ��� � � �� ���������������������������������� � � �� ���������������������������������� ������������������������������������������������������� no effect up to N 2 LO (modulo reshuffling) � � �� expect large contributions to the ring & 2 π -1 π -topologies saturating some of the ����������������������������������������������� N 4,5,6 LO graphs in the Δ -less theory What is more efficient: Δ -less N 4 LO (and beyond?) vs Δ -full N 3 LO ?? � π - � π ���� � π Reshuffles effects to different chiral orders

  7. SRG Evolution in HO Basis Most common to SRG evolve 3N in HO basis: 3B-Jacobi HO matrix elements � = 0 . 00 fm 4 � = ∞ fm � 1 � � 0 � E � � � JT � E � JT � � � H � � T int � + , T = 1 J � = 1 2 , � Ω = 24 MeV 2 E � � NCSM ground state 3 H 18 � 20 -6.5 ( E � , � � ) � 22 0 -7 E [MeV] 24 0.12 -7.5 � 0.32 [MeV] 26 -8 0.64 � � 1.16 � � � � � 28 -8.5 . 0 4 8 12 16 20 24 28 2 0 � E � 18 20 22 24 26 28 N m �� ( E, � ) 1) SRG-evolve both NN and 3N: NN+3N-full 2) NN Vlowk, refit 3N: NN+3N-fit

  8. SRG Evolution in HO Basis Most common to SRG evolve 3N in HO basis: 3B-Jacobi HO matrix elements � = 0 . 02 fm 4 � = 2 . 66 fm � 1 � � 0 � E � � � JT � E � JT � � � H � � T int � + , T = 1 J � = 1 2 , � ٠= 24 MeV 2 E � � NCSM ground state 3 H 18 � 20 -6.5 ( E � , � � ) 22 � 0 -7 E [MeV] 24 0.12 -7.5 � 0.32 [MeV] 26 0.64 -8 � � 1.16 � � � � � � � � 28 -8.5 . 0 4 8 12 16 20 24 28 2 0 � E � 18 20 22 24 26 28 N m �� ( E, � ) 1) SRG-evolve both NN and 3N: NN+3N-full 2) NN Vlowk, refit 3N: NN+3N-fit

  9. SRG Evolution in HO Basis Most common to SRG evolve 3N in HO basis: 3B-Jacobi HO matrix elements � = 1 . 28 fm 4 � = 0 . 94 fm � 1 � � 0 � E � � � JT � E � JT � � � H � � T int � + , T = 1 J � = 1 2 , � ٠= 24 MeV 2 E � � NCSM ground state 3 H 18 � 20 -6.5 ( E � , � � ) 22 � 0 -7 E [MeV] 24 0.12 -7.5 0.32 [MeV] 26 � -8 0.64 � � 1.16 � � � � � � � � � � 28 -8.5 . 0 4 8 12 16 20 24 28 2 0 � E � 18 20 22 24 26 28 N m �� ( E, � ) 1) SRG-evolve both NN and 3N: NN+3N-full 2) NN Vlowk, refit 3N: NN+3N-fit

  10. Induced 3N Forces Effect of including 3N-ind? Exactly initial up to neglected 4N-ind V NN − 24 − 7.4 4 He 3 H NN-only 3 LO (500 MeV) N Ground-State Energy [MeV] − 7.6 NN + NNN-induced Ground-State Energy [MeV] − 25 − 7.8 − 26 − 8.0 NN-only − 27 3 LO (500 MeV) NN+NNN-induced N − 8.2 − 28 Expt. − 8.4 Expt. − 29 − 8.6 1 2 3 4 5 6 7 10 20 1 2 3 4 5 10 20 − 1 ] − 1 ] λ [fm λ [fm NN-only clear cutoff dependencs 3N-ind: dramatic reduction in cutoff dependence, no agreement with experiment

  11. Induced 3N Forces Effect of including 3N-ind? Exactly initial up to neglected 4N-ind V NN − 24 − 24 − 7.4 − 7.4 4 He 4 He 3 H NN-only 3 H NN-only 3 LO (500 MeV) 3 LO (500 MeV) N N NN + NNN-induced Ground-State Energy [MeV] − 7.6 − 7.6 NN + NNN-induced Ground-State Energy [MeV] Ground-State Energy [MeV] Ground-State Energy [MeV] − 25 − 25 NN + NNN − 7.8 − 7.8 − 26 − 26 − 8.0 − 8.0 NN-only NN-only − 27 − 27 NN+NNN-induced NN+NNN-induced 3 LO (500 MeV) N +NNN-initial − 8.2 − 8.2 − 28 − 28 Expt. Expt. − 8.4 − 8.4 Expt. Expt. − 29 − 8.6 − 29 − 8.6 1 5 6 7 1 2 3 4 5 10 20 2 3 4 10 20 1 2 3 4 5 6 7 10 20 1 2 3 4 5 10 20 − 1 ] − 1 ] − 1 ] − 1 ] λ [fm λ [fm λ [fm λ [fm NN-only clear cutoff dependencs 3N-ind: dramatic reduction in cutoff dependence, no agreement with experiment NN+3N-full retains cutoff independence, reproduces experiment!

  12. Benefits of Lower Cutoffs Use cutoff dependence to assess missing physics: return to Tjon line Varying cutoff moves along line Still never reaches experiment Tool, not a parameter! ing

  13. Benefits of Lower Cutoffs Use cutoff dependence to assess missing physics: return to Tjon line Varying cutoff moves along line Tjon line for NN-only potentials 30 Still never reaches experiment SRG NN-only − 1 ) SRG NN+NNN ( λ >1.7 fm 29 Tool, not a parameter! λ =1.8 4 He) [MeV] Expt. λ =1.5 Including 3N reaches expt. 28 λ =2.0 λ =2.5 27 Why not perfect fit? λ =1.2 λ =3.0 E b ( 26 28.4 ing 3 LO N 28.3 25 (500 MeV) 28.2 8.45 8.5 24 7.6 7.8 8 8.2 8.4 8.6 8.8 3 H) [MeV] E b (

  14. Cutoff Variation with 3N Forces Use cutoff variation to assess missing physics in few body systems Radii of triton and alpha particle calculated from NN+3N forces Minimal cutoff variation

  15. Chiral Three-Body Forces in Light Nuclei Importance of chiral 3N forces established in light nuclei Converged NCSM (Navratil 2007) They work! What about nuclear matter?

  16. Perturbative in Symmetric Nuclear Matter? H ( Λ ) = T + V NN ( Λ ) + V 3N ( Λ ) + V 4N ( Λ ) + · · · Yes, but if I remember, saturation isn’t correct Significant improvement with low-momentum interactions!

  17. Perturbative in Symmetric Nuclear Matter? H ( Λ ) = T + V NN ( Λ ) + V 3N ( Λ ) + V 4N ( Λ ) + · · · empirical Now NN+3N-fit remain perturbative and reproduce saturation! Minor but non-negligible cutoff variation

  18. 3N Forces for Valence-Shell Theories Normal-ordered 3N : contribution to valence neutron interactions Effective two-body Effective one-body 16 16 O core O core a V 3 N ,eff a ' = 1 ∑ ab V 3 N ,eff a ' b ' = α ab V 3 N α a ' b ' ∑ αβ a V 3 N αβ a ' 2 α = core αβ = core Combine with microscopic NN: eliminate empirical adjustments

  19. 3N Forces for Valence-Shell Theories Effects of residual 3N between 3 valence nucleons? Normal-ordered 3N : microscopic contributions to inputs for CI Hamiltonian Effects of residual 3N between 3 valence nucleons? Coupled-Cluster theory with 3N: benchmark of 4 He 0- 1- and 2-body of 3NF dominate Residual 3N can be neglected Work on 16 O in progress Hagen, Papenbrock et al . (2007) Approximated residual 3N by summing over valence nucleon – Nucleus-dependent: effect small, not negligible by 24 O

  20. Two-body 3N: Monopoles in sd -shell 1 Dominant effect from 0.5 T=1 one- Δ – as expected 0 from cutoff variation V(ab;T) [MeV] -0.5 3N forces produce clear -1 repulsive shift in monopoles V low k -1.5 +3N ( Δ ) -2 2 LO) + 3N (N -2.5 USDa USDb -3 -3.5 d5d5 d5d3 d5s1 d3d3 d3s1 s1s1 First calculations to show missing monopole strength due to neglected 3N Future : Improved treatment of high-lying orbits

  21. Oxygen Anomaly First calculations using NN+3N Probe limits of nuclear existence with 3N forces F dripline 3N repulsion amplified with N: crucial for neutron-rich nuclei ? d 3/2 unbound at 24 O with 3N forces 4 Single-Particle Energy (MeV) 2 (d) V NN + 3N ( ∆ ,N LO ) forces low k 0 d3/2 -4 s 1/2 d5/2 -8 2 NN + 3N (N LO) NN + 3N ( ∆ ) NN 8 14 16 20 Neutron Number ( N ) Otsuka, Suzuki, JDH, Schwenk, Akaishi, PRL (2010)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend