evidence for three nucleon interaction in isotope shifts
play

Evidence for three-nucleon interaction in isotope shifts of Z = magic - PowerPoint PPT Presentation

Evidence for three-nucleon interaction in isotope shifts of Z = magic nuclei H. Nakada ( Chiba U., Japan ) @ Tsukuba; May 11, 2016 Contents : I. Introduction II. Mean-field approaches with semi-realistic interaction III. Incorporating 3 N LS


  1. Evidence for three-nucleon interaction in isotope shifts of Z = magic nuclei H. Nakada ( Chiba U., Japan ) @ Tsukuba; May 11, 2016 Contents : I. Introduction II. Mean-field approaches with semi-realistic interaction III. Incorporating 3 N LS interaction IV. 3 N LS interaction & isotope shifts V. Summary H.N. & T. Inakura, P.R.C 91, 021302(R) (’15) H.N., P.R.C 92, 044307 (’15)

  2. I. Introduction Shell structure ( → magic number) — fundamental concept for nuclear structure astrophysical importance  waiting point in s - & r -processes   constraint on EoS ← subtracting shell effects  clusters in n -star inner crust ( ↔ e.g. QPO)  ⋆ Z - & N -dep. ! (“shell evolution”) ⋆ central + ℓs potential ℓs pot. ↔ ℓs splitting ( → magic #’s in Z, N > 20 ) · · · origin ? ◦ 2 N LS int. — insufficient ( ⇒ strong LS int. used in phenomenology) ◦ tensor int. (+ α ) → Z - & N -dep. (1st-order effects) contribution to overall strength (2nd-order effects) ? · · · small ✬ ✩ comprehension of its origin → correct prediction of shell structure ✫ ✪

  3. ⋆ 3 N int. ( χ EFT) → ρ -dep. LS int. Ref. : M. Kohno, P.R.C 86, 061301(R) stronger LS int. at higher ρ ( → stronger ℓs pot.) — complementary to 2 N LS int ! ⇒ experimental evidence independent of ℓs splitting ? ( → good reliability)

  4. ∆ ⟨ r 2 ⟩ p ( A Pb ) := ⟨ r 2 ⟩ p ( A Pb ) − ⟨ r 2 ⟩ p ( 208 Pb ) Isotope shifts in Pb nuclei exp. ⇒ kink at N = 126 !  electron scatt.   X-ray freq. difference ( µ − atom, Kα , OIS)   Ref. : M.M. Sharma et al. , P.R.L. 74, 3744 reproduced by RMF, but not by Skyrme EDF up to ’95 → dep. on isospin content of LS int. ( → extension of Skyrme EDF) · · · but cannot be a complete solution !

  5. kink in ∆ ⟨ r 2 ⟩ p ( A Pb ) at N = 126 ← − n 0 i 11 / 2 occupation ⇑  larger ⟨ r 2 ⟩ p - n attraction    than neighboring orbits    N < 126 — unocc.  N > 126 — sizable occ. prob.     ( ∵ pairing)  Ref. : P.-G. Reinhard & H. Flocard, N.P.A 584, 467 ‘understanding’ in ’90’s · · · ε n (0 i 11 / 2 ) − ε n (1 g 9 / 2 ) is a key ↔ isospin content of LS int. However, ε n (0 i 11 / 2 ) ≈ ε n (1 g 9 / 2 ) required ! ( ↔ equal occ. prob.) on the contrary · · · 11 / 2 + ✻ 0 . 78 MeV ❄ 9 / 2 + 209 Pb

  6. II. Mean-field approaches with semi-realistic interaction “Semi-realistic” nucleonic interaction ← − microscopic 2 N (+ 3 N ) int. ↑ phenomenological modification { saturation properties ℓs splitting (?) ⇒ MF (HF, HFB) & RPA calculations nuclear reactions · · · future project

  7. p 2 ∑ ∑ i Effective Hamiltonian H = H N + V C − H c . m . ; H N = 2 M + v ij ˆ i i<j (rotational & translational inv.) v (C) v (LS) v (TN) v (C ρ ) v (LS ρ ) ( ) v ij = ˆ ˆ ij + ˆ + ˆ + ˆ +ˆ ; ij ij ij ij v (C) ∑ t (SE) P SE + t (TE) P TE + t (SO) P SO + t (TO) f (C) ( ) ˆ = P TO n ( r ij ) , n n n n ij n   ( 1 − P σ ) ( 1 + P τ ) ( 1 + P σ ) ( 1 − P τ ) P SE := , P TE := , 2 2 2 2     ( 1 − P σ ) ( 1 − P τ ) ( 1 + P σ ) ( 1 + P τ )   P SO := , P TO :=   2 2 2 2 v (LS) ∑ t (LSE) P TE + t (LSO) f (LS) ( ) ˆ = P TO ( r ij ) L ij · ( s i + s j ) , n n n ij n v (TN) ∑ t (TNE) P TE + t (TNO) f (TN) ( r ij ) r 2 ( ) ˆ = P TO ij S ij ij n n n n v (C ρ ) C (SE) [ ρ ( r i )] P SE + C (TE) [ ρ ( r i )] P TE ( ) ˆ = δ ( r ij ) ; ij r ij ) − σ i · σ j , f n ( r ) = e − µ n r /µ n r L ij := r ij × p ij , S ij := 3( σ i · ˆ r ij )( σ j · ˆ ρ ρ α (Y) ( Y = SE or TE ; α (SE) = 1 , α (TE) = 1 / 3 ) C (Y) [ ρ ] = t (Y)

  8. M3Y int. · · · Yukawa function → fit to G -matrix (at ρ ≈ ρ 0 / 3 ) v (C) v (C) • OPEP → longest part of ˆ ( ≡ ˆ OPEP ) ij • popular in reaction problems v (C ρ ) • no saturation (without modification) → add ˆ ij ‘ M3Y-P n ’ { v (C) by ˆ v (C ρ ) replace short-range part of ˆ • modifying M3Y-Paris v (LS) enhance ˆ ( ↔ ℓs splitting) v (C) • keeping ˆ OPEP v (TN) from M3Y-Paris in M3Y-P5 to P7 • no change for ˆ (— realistic tensor force) · · · leading order of chiral dynamics basic formulae : H.N., P.R.C 68, 014316 (’03) M3Y-P6, P7 : H.N., P.R.C 87, 014336 (’13) ⇒ nuclear matter & finite nuclei

  9. Numerical methods for finite nuclei — Gaussian expansion method • spherical HF · · · H.N. & M. Sato, N.P.A 699, 511 (’02); 714, 696 (’03) • spherical HFB · · · H.N., N.P.A 764, 117 (’06); 801, 169 (’08) • axial HF & HFB · · · H.N., N.P.A 808, 47 (’08) • spherical RPA · · · H.N., K. Mizuyama, M. Yamagami & M. Matsuo, N.P.A 828, 283 (’09) ✬ ✩ Advantages of the method (i) ability to describe ε -dep. exponential/oscillatory asymptotics (ii) tractability of various 2-body interactions (iii) basis parameters insensitive to nuclide (iv) exact treatment of Coulomb & c.m. Hamiltonian ✫ ✪

  10. ⋆ Energies & radii of doubly magic nuclei : SLy5 D1S M3Y-P6 M3Y-P7 CCSD Exp. 16 O − E 128 . 6 129 . 5 126 . 3 125 . 9 107 . 5 127 . 6 √ ⟨ r 2 ⟩ 2 . 59 2 . 61 2 . 59 2 . 57 — 2 . 61 40 Ca − E 344 . 3 344 . 6 335 . 9 334 . 3 308 . 8 342 . 1 √ ⟨ r 2 ⟩ 3 . 29 3 . 37 3 . 37 3 . 35 — 3 . 47 48 Ca − E 416 . 0 416 . 8 413 . 8 414 . 9 355 . 2 416 . 0 √ ⟨ r 2 ⟩ 3 . 44 3 . 51 3 . 51 3 . 49 — 3 . 57 90 Zr − E 782 . 4 785 . 9 781 . 1 780 . 8 — 783 . 9 √ ⟨ r 2 ⟩ 4 . 22 4 . 24 4 . 23 4 . 22 — 4 . 32 208 Pb − E 1635 . 2 1639 . 0 1634 . 5 1635 . 5 — 1636 . 4 √ ⟨ r 2 ⟩ 5 . 52 5 . 51 5 . 53 5 . 51 — 5 . 49 CCSD · · · G. Hagen et al. , P.R.L. 101, 092502 (’08) (chiral N 3 LO without 3NF)

  11. ⋆ Separation energies of proton- / neutron-magic nuclei : · · · important in astrophysics S n ( Z, N ) := E ( Z, N − 1) − E ( Z, N ) S 2 n ( Z, N ) := E ( Z, N − 2) − E ( Z, N ) = S n ( Z, N ) + S n ( Z, N − 1) ( Z, N − 1) := E ( Z, N − 1) − 1 ∆ mass [ ] E ( Z, N − 2) + E ( Z, N ) n 2 = 1 [ ] S n ( Z, N ) − S n ( Z, N − 1) (for N − 1 = odd ) 2 ↔ pairing ✻ ( Z, N − 2) S 2 n ✻ ✻ ( Z, N − 1) ∆ mass n S n ( Z, N ) ( S p , S 2 p , ∆ mass → obtained analogously) p ∆ mass for Z = 50 & ∆ mass for N = 82 · · · fitted n p

  12. !"#$% &!"#$'( !"#$%& '!"#$%( ! ! ! ! # $ %&'()* # $ %&'()* $ % &'()*+ $ % &'()*+ "# "# " " "! "! ! ! # # " " ! ! 1 / " , 2 1 / ," ,! +" +! 2" 2! !" "1 "0 "- ! 1 0 - "0 "- ! 1 0 - 2! - - / / )!"#$'% *!"#$+( )!"#$*& +!"#$(% ! ! ! ! # $ %&'()* # $ %&'()* $ % &'()*+ $ % &'()*+ "# "# " " "! "! ! ! # # " " ! ! +" 2" !" 1" 1" 0" /" ." 2! 2# 1! 1# #! #! ## 0! 0# .! - - / / ,!"#$%' ,!"#$-%. ! ! # $ %&'()* $ % &'()*+ "# " "! ! # " ! "" "! " ! ," ,! +" .! .# -! -# ,! ,# - / • : M3Y-P7 △ : D1M × : Exp.

  13. ⋆ N -dependence of single-proton energies below Z = 20 — 1 s 1 / 2 - 0 d 3 / 2 inversion ∆ ε p = ε p (1 s 1 / 2 ) − ε p (0 d 3 / 2 ) Ref : M. Grasso et al. , P.R.C 76, 044319 (’07) (Exp. : average weighted by spectroscopic factor)

  14. Case of semi-realistic int. (M3Y-P5 ′ ) " # De % &'()*+ $ ⇓ v (TN) ⇒ # &/#0 &/#( " &(!1 2,3 &45%6 ! "$ ", !$ !, -$ -, ,$ . v (TN) → correct N -dep. of ∆ ε p (in N = 20 – 28 ) ! realistic ˆ H.N., K. Sugiura & J. Margueron, P.R.C 87, 067305 (’13)

  15. ⋆ Magic numbers 126 120 Z magic N magic M3Y-P6 submagic (0.5) submagic (0.5) (0.8) (0.8) 92 Z=82 N=184 64 164 58 Z=50 N=126 40 Z Z=28 N=82 Z=20 N N=50 14 Z=8 28 H.N. & K. Sugiura, P.T.E.P. 2014, 033D02

  16. III. Incorporating 3 N LS interaction Semi-realistic M3Y-P6 int. · · · reasonable shell structure ⇒ yardstick v (LS ρ ) ) Ref. : M. Kohno, P.R.C 86, 061301(R) 3 N LS int. ↔ ρ -dep. LS int. ( ˆ ⇓ v (LS) M3Y-P6 — ˆ M3Y × 2 . 2 (equate ε n (0 i 11 / 2 ) − ε n (0 i 13 / 2 ) at 208 Pb) vs. v (LS) v (LS ρ ) M3Y-P6a — ˆ M3Y + ˆ v (LS ρ ) = 2 i D [ ρ ( R ij )] p ij × δ ( r ij ) p ij · ( s i + s j ) ; ρ ( r ) ( ) D [ ρ ( r )] = − w 1 ≈ − w 1 ρ ( r ) 1 + d 1 ρ ( r ) d 1 = 1 . 0 fm 3 (prefix), w 1 ( > 0) : fitted

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend