ab initio approaches to light nuclei
play

Ab Initio Approaches to Light Nuclei Lecture 3: Light Nuclei - PowerPoint PPT Presentation

Ab Initio Approaches to Light Nuclei Lecture 3: Light Nuclei Robert Roth Overview Lecture 1: Fundamentals Prelude Many-Body Quantum Mechanics Lecture 1: Nuclear Hamiltonian Nuclear Interactions Matrix Elements


  1. Ab Initio Approaches 
 to Light Nuclei Lecture 3: Light Nuclei ● Robert Roth

  2. Overview § Lecture 1: Fundamentals Prelude ● Many-Body Quantum Mechanics § Lecture 1’: Nuclear Hamiltonian Nuclear Interactions ● Matrix Elements § Lecture 2: Correlations Two-Body Problem ● Unitary Transformations ● Similarity Renormalization Group § Lecture 3: Light Nuclei Configuration Interaction ● No-Core Shell Model ● Importance Truncation § Lecture 4: Beyond Light Nuclei Coupled-Cluster Theory ● In-Medium Similarity Renormalization Group 2

  3. Definition: Ab Initio solve nuclear many-body problem based on realistic interactions using controlled and improvable truncations with quantified theoretical uncertainties § numerical treatment with some truncations or approximations is inevitable for any nontrivial nuclear structure application § challenges for ab initio calculations are to • control the truncation effects • quantify the resulting uncertainties • reduce them to an acceptable level § convergence with respect to truncations is important: demonstrate that observables become independent of truncations § smooth transition from approximation to ab initio calculation… 3

  4. Configuration Interaction 
 Approaches

  5. Configuration Interaction (CI) § select a convenient single-particle basis | � 〉 = | n � jm tm t 〉 § construct A-body basis of Slater determinants from all possible combinations of A different single-particle states | � � 〉 = | { � 1 � 2 ... � A } � 〉 § convert eigenvalue problem of the Hamiltonian into a matrix eigenvalue problem in the Slater determinant representation C ( n ) X H int | Ψ n 〉 = E n | Ψ n 〉 | � n 〉 = | � � 〉 � � . .  .      . . . . . .       C ( n ) C ( n ) ... h � � | H int | � � 0 i ...  = E n       � 0 � .       . .      . . . . . . 5

  6. Model Space Truncations § have to introduce truncations of the single/many-body basis to make the Hamilton matrix finite and numerically tractable • full CI : 
 truncate the single-particle basis, e.g., at a maximum single-particle energy • particle-hole truncated CI : 
 truncate single-particle basis and truncate the many-body basis at a maximum n-particle-n-hole excitation level • interacting shell model : 
 truncate single-particle basis and freeze low-lying single-particle states (core) 
 § in order to qualify as ab initio one has to demonstrate convergence with respect to all those truncations § there is freedom to optimize the single-particle basis , instead of HO states one can use single-particle states from a Hartree-Fock calculation 6

  7. Variational Perspective § solving the eigenvalue problem in a finite model space is equivalent to a variational calculation with a trial state D C ( n ) X | � n ( D ) 〉 = | � � 〉 � � = 1 § formally, the stationarity condition for the energy expectation value directly leads to the matrix eigenvalue problem in the truncated model space ➜ problem session yesterday § Ritz variational principle : the ground-state energy in a D-dimensional model space is an upper bound for the exact ground-state energy E 0 ( D ) ≥ E 0 ( exact ) § Hylleraas-Undheim theorem : all states of the spectrum have a monotonously decreasing energy with increasing model space dimension E n ( D ) ≥ E n ( D + 1 ) 7

  8. No-Core Shell Model

  9. No-Core Shell Model (NCSM) § NCSM is a special case of a CI approach: • single-particle basis is a spherical HO basis • truncation in terms of the total number of HO excitation quanta N max in the many-body states § specific advantages of the NCSM: • many-body energy truncation ( N max ) truncation is much more efficient than single-particle energy truncation ( e max ) ˆ • equivalent NCSM formulation in relative Jacobi coordinates for each N max — Jacobi-NCSM • explicit separation of center of mass and intrinsic states possible for each N max ˆ 9

  10. 4 He: NCSM Convergence § worst case scenario for NCSM convergence: Argonne V18 potential α = 0 . 00 fm 4 α = 0 . 03 fm 4 N m  x -10 40 0 2 4 NN only 6 -15 20 E [ MeV ] 8 -20 0 10 12 -25 14 -20 16 E AV18 E exp . . 20 40 60 80 20 40 60 80 h Ω [ MeV ] h Ω [ MeV ] ̵ ̵ 10

  11. NCSM Basis Dimension P. Maris 10 10 9 10 M-scheme basis space dimension 8 10 7 10 6 4He 10 6Li 5 8Be 10 10B 4 10 12C 16O 3 10 19F 2 23Na 10 27Al 1 10 0 10 0 2 4 6 8 10 12 14 N max 11

  12. Importance Truncation § converged NCSM calculations -110 16 O limited to lower & mid p-shell -120 nuclei NN only E [ MeV ] α = 0 . 04 fm 4 -130 h Ω = 20 MeV ̵ § example: full N max =10 calculation -140 for 16 O would be very difficult, -150 basis dimension D > 10 10 . 0 2 4 6 8 10 12 14 16 18 20 N m  x 12

  13. Importance Truncation § converged NCSM calculations -110 16 O limited to lower & mid p-shell -120 nuclei NN only E [ MeV ] α = 0 . 04 fm 4 -130 h Ω = 20 MeV ̵ § example: full N max =10 calculation -140 for 16 O would be very difficult, -150 basis dimension D > 10 10 . 0 2 4 6 8 10 12 14 16 18 20 -110 ● IT-NCSM N m  x Importance + full NCSM -120 Truncation E [ MeV ] -130 reduce model space to the -140 relevant basis states using an a priori importance measure -150 derived from MBPT . 0 2 4 6 8 10 12 14 16 18 20 N m  x 13

  14. Importance Truncation ■ starting point : approximation ∣ Ψ ref ⟩ for the target state within a limited reference space M ref C ( ref ) ∣ Ψ ref ⟩ = ∣  ν ⟩ ∑ ν ν ∈ M ref ■ measure the importance of individual basis state ∣  ν ⟩ ∉ M ref via first-order multiconfigurational perturbation theory κ ν = −⟨  ν ∣ H ∣ Ψ ref ⟩ Δ ε ν ■ construct importance-truncated space M( κ min ) from all basis states with ∣ κ ν ∣ ≥ κ min ■ solve eigenvalue problem in importance truncated space M IT ( κ min ) and obtain improved approximation of target state 14

  15. Threshold Extrapolation -146.0 ■ repeat calculations for a -146.5 sequence of importance thresholds κ min E [MeV] -147.0 16 O -147.5 NN-only ■ observables show smooth α = 0 . 04 fm 4 threshold dependence and -148.0 h Ω = 20 MeV ̵ systematically approach the N m  x = 8 -148.5 full NCSM limit . -150.0 ■ use a posteriori extrapola- -151.0 tion κ min → 0 of observables to E [MeV] -152.0 account for effect of excluded configurations -153.0 -154.0 N m  x = 12 ■ uncertainty quantification -155.0 . via set of extrapolations 0 2 4 6 8 10 κ min × 10 5 15

  16. 4 He: Ground-State Energy Roth, et al; PRL 107, 072501 (2011); PRL 109, 052501 (2012) NN only NN+3N ind NN+3N full -23 ̵ h Ω = 20 MeV -24 -25 E [ MeV ] -26 -27 -28 Exp. -29 . 2 4 6 8 10 12 14 16 ∞ 2 4 6 8 10 12 14 2 4 6 8 10 12 14 ∞ ∞ N m  x N m  x N m  x ● ◆ ★ ▲ ∎ α = 0 . 04 fm 4 α = 0 . 05 fm 4 α = 0 . 0625 fm 4 α = 0 . 08 fm 4 α = 0 . 16 fm 4 Λ = 2 . 24 fm − 1 Λ = 2 . 11 fm − 1 Λ = 2 . 00 fm − 1 Λ = 1 . 88 fm − 1 Λ = 1 . 58 fm − 1 16

  17. 7 Li: Ground-State Energy Roth, et al; PRL 107, 072501 (2011); PRL 109, 052501 (2012) NN only NN+3N ind NN+3N full -22 ̵ h Ω = 20 MeV -24 -26 E [ MeV ] -28 -30 -32 Exp. . -34 2 4 6 8 10 12 14 ∞ 2 4 6 8 10 12 2 4 6 8 10 12 ∞ ∞ N m  x N m  x N m  x ● ◆ ★ ▲ ∎ α = 0 . 04 fm 4 α = 0 . 05 fm 4 α = 0 . 0625 fm 4 α = 0 . 08 fm 4 α = 0 . 16 fm 4 Λ = 2 . 24 fm − 1 Λ = 2 . 11 fm − 1 Λ = 2 . 00 fm − 1 Λ = 1 . 88 fm − 1 Λ = 1 . 58 fm − 1 17

  18. 12 C: Ground-State Energy Roth, et al; PRL 107, 072501 (2011); PRL 109, 052501 (2012) NN only NN+3N ind NN+3N full -60 ̵ h Ω = 20 MeV -70 E [ MeV ] -80 -90 Exp. -100 . -110 2 4 6 8 10 12 14 ∞ 2 4 6 8 10 12 2 4 6 8 10 12 ∞ ∞ N m  x N m  x N m  x ● ◆ ★ ▲ ∎ α = 0 . 04 fm 4 α = 0 . 05 fm 4 α = 0 . 0625 fm 4 α = 0 . 08 fm 4 α = 0 . 16 fm 4 Λ = 2 . 24 fm − 1 Λ = 2 . 11 fm − 1 Λ = 2 . 00 fm − 1 Λ = 1 . 88 fm − 1 Λ = 1 . 58 fm − 1 18

  19. 16 O: Ground-State Energy Roth, et al; PRL 107, 072501 (2011); PRL 109, 052501 (2012) NN only NN+3N ind NN+3N full -80 ̵ h Ω = 20 MeV -100 -120 E [ MeV ] Exp. -140 -160 -180 . signature of induced 2 4 6 8 10 12 14 ∞ 2 4 6 8 10 12 2 4 6 8 10 12 ∞ ∞ 4N interactions beyond N m  x N m  x N m  x mid p-shell ● ◆ ★ ▲ ∎ α = 0 . 04 fm 4 α = 0 . 05 fm 4 α = 0 . 0625 fm 4 α = 0 . 08 fm 4 α = 0 . 16 fm 4 Λ = 2 . 24 fm − 1 Λ = 2 . 11 fm − 1 Λ = 2 . 00 fm − 1 Λ = 1 . 88 fm − 1 Λ = 1 . 58 fm − 1 19

  20. 16 O: Ground-State Energy Roth, et al; PRL 107, 072501 (2011); PRL 109, 052501 (2012) NN only NN+3N ind NN+3N full -80 ̵ h Ω = 20 MeV -100 Λ 3N =400 MeV -120 E [ MeV ] Exp. -140 Λ 3N =500 MeV -160 -180 . 2 4 6 8 10 12 14 ∞ 2 4 6 8 10 12 2 4 6 8 10 12 ∞ ∞ N m  x N m  x N m  x ◆ ★ ▲ ∎ � α = 0 . 04 fm 4 α = 0 . 05 fm 4 α = 0 . 0625 fm 4 α = 0 . 08 fm 4 α = 0 . 16 fm 4 Λ = 2 . 24 fm − 1 Λ = 2 . 11 fm − 1 Λ = 2 . 00 fm − 1 Λ = 1 . 88 fm − 1 Λ = 1 . 58 fm − 1 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend