t wo state spin system
play

T wo-State Spin System graph G =( V , E ) 2 states {0,1} - PowerPoint PPT Presentation

Approximate Counting v ia Correlation Decay i n Spin Systems Yitong Yin Nanjing University Joint work with Liang Li ( Peking U ) and Pinyan Lu ( MSRA ) T wo-State Spin System graph G =( V , E ) 2 states {0,1} configuration : V { 0 , 1 }


  1. Approximate Counting v ia Correlation Decay i n Spin Systems Yitong Yin Nanjing University Joint work with Liang Li ( Peking U ) and Pinyan Lu ( MSRA )

  2. T wo-State Spin System graph G =( V , E ) 2 states {0,1} configuration σ : V → { 0 , 1 } contributions of local interactions: 1 β γ weight: � ������������ ( e ) w ( σ ) = e ∈ E

  3. T wo-State Spin System graph G =( V , E ) 2 states {0,1} configuration σ : V → { 0 , 1 } � A 0 , 0 � � β � 1 A 0 , 1 A = = 1 A 1 , 0 A 1 , 1 γ contributions of local interactions: 1 β γ weight: � w ( σ ) = A σ ( u ) , σ ( v ) ( u,v ) ∈ E

  4. T wo-State Spin System graph G =( V , E ) 2 states {0,1} configuration σ : V → { 0 , 1 } � A 0 , 0 � � β � 1 A 0 , 1 A = = 1 A 1 , 0 A 1 , 1 γ weight: � w ( σ ) = A σ ( u ) , σ ( v ) ( u,v ) ∈ E µ ( σ ) = w ( σ ) Gibbs measure: Z A ( G ) partition function: � Z A ( G ) = w ( σ ) σ ∈ { 0 , 1 } V

  5. Partition Function graph G =( V , E ) 2 states {0,1} configuration σ : V → { 0 , 1 } � A 0 , 0 � � β � 1 A 0 , 1 A = = 1 A 1 , 0 A 1 , 1 γ partition function: � � Z A ( G ) = A σ ( u ) ,σ ( v ) σ ∈ { 0 , 1 } V ( u,v ) ∈ E # independent set # vertex cover β = 0 , γ = 1 weighted Boolean CSP with one symmetric relation

  6. Approximate Counting � A 0 , 0 � � β � 1 A 0 , 1 fix A = = 1 A 1 , 0 A 1 , 1 γ partition function: � � Z A ( G ) = A σ ( u ) ,σ ( v ) σ ∈ { 0 , 1 } V ( u,v ) ∈ E is a well-define computational problem or poly-time computable if βγ = 1 ( β , γ ) = (0 , 0) #P-hard if otherwise Approximation!

  7. [JS93] Jerrum-Sinclair’93 [GJP03] Goldberg-Jerrum-Paterson’03 3 γ ferromagnetic 2-state spin FPRAS [GJP03] 2.5 �� = 1 uniqueness threshold threshold achieved by heatbath random walk 2 ferromagnetic Ising Model 1.5 anti- FPRAS [JS93] � ferromagnetic 1.11017 1 0 ≤ β , γ ≤ 1 0 < � , � < 1 no FPRAS 0.5 FPRAS [GJP03] unless NP ⊆ RP heat-bath [GJP03] 0 β 0 0.5 1 1.5 2 2.5 3 �

  8. Uniqueness Threshold � �� � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � �� � d � � � � � � � � � � � � � � �� � � � � β x + 1 � f ( x ) = x + γ �� � � 1.11017 x = f (ˆ ˆ x ) � � � � � � � � � � � �� � | f � (ˆ x ) | < 1 for all d � � �� � � �� � � �� � � � 0 ≤ β < 1 < γ

  9. Our Result 3 γ 2.5 �� = 1 uniqueness threshold threshold achieved by heatbath random walk 2 1.5 � 1.11017 1 0 ≤ β , γ ≤ 1 0 < � , � < 1 0.5 FPTAS 0 β 0 0.5 1 1.5 2 2.5 3 �

  10. Marginal Distribution weight: � w ( σ ) = A σ ( u ) , σ ( v ) ( u,v ) ∈ E µ ( σ ) = w ( σ ) Gibbs measure: Z A ( G ) � � Z A ( G ) = A σ ( u ) ,σ ( v ) σ ∈{ 0 , 1 } V ( u,v ) ∈ E marginal distributions at vertex v : p v = �� σ ∼ µ [ σ ( v ) = 0] σ Λ ∈ { 0 , 1 } Λ fixed free v �� Λ v ∈ Λ Λ ⊂ V p σ Λ = �� σ ∼ µ [ σ ( v ) = 0 | σ ( Λ ) = σ Λ ] v

  11. Self-reduction (Jerrum-Valiant-Vazirani) p σ Λ σ Λ ∈ { 0 , 1 } Λ = �� σ [ σ ( v ) = 0 | σ (Λ) = σ Λ ] Λ ⊂ V v σ i : v 1 , v 2 , . . . , v i �� 1 V = { v 1 , v 2 , . . . , v n } �� ( σ n ) = �� σ [ σ : v 1 , . . . , v n �� 1] n � �� = σ [ σ ( v i ) = 1 | σ : v 1 , . . . , v i − 1 �� 1] i =1 n � = (1 − p σ i − 1 ) v i i =1 γ | E | = γ | E | �� ( σ n ) = w ( σ n ) Z ( G ) = � n i =1 (1 − p σ i − 1 ) Z ( G ) Z ( G ) v i

  12. Correlation Decay ∀ σ ∂ B , τ ∂ B ∈ { 0 , 1 } ∂ B �� σ [ σ ( v ) = 0 | σ ∂ B ] ≈ �� σ [ σ ( v ) = 0 | τ ∂ B ] p σ Λ �� σ [ σ ( v ) = 0 | σ ∂ B , σ Λ ] ≈ �� σ [ σ ( v ) = 0 | τ ∂ B , σ Λ ] ≈ v G error < exp (- t ) ∂ B B exponential t correlation decay v Λ “ strong spatial mixing ” in [Weitz’06]

  13. Recursion for Tree σ Λ ∈ { 0 , 1 } Λ Λ ⊂ V T v p σ Λ v R σ Λ = T 1 − p σ Λ v v 1 v 2 v d T d T 1 = �� σ ∼ µ | σ Λ [ σ ( v ) = 0] �� σ ∼ µ | σ Λ [ σ ( v ) = 1] d β R σ Λ T i + 1 R σ Λ � T = R σ Λ T i + γ i =1 � d i =1 ( β w ( σ T i : v i �� 0) + w ( σ T i : v i �� 1)) w ( σ T : v �� 0) w ( σ T : v �� 1) = � d i =1 ( w ( σ T i : v i �� 0) + γ w ( σ T i : v i �� 1))

  14. Self-Avoiding Walk Tree due to Weitz (2006) G =( V , E ) T = T ��� ( G, v ) 1 v 1 4 2 3 4 3 2 6 6 4 3 5 σ Λ 5 6 6 5 1 6 6 1 5 6 6 p σ Λ v R σ Λ G,v = 4 5 4 1 − p σ Λ 6 6 v 4 4 Weitz (2006) if cycle closing > cycle starting R σ Λ G,v = R σ Λ T if cycle closing < cycle starting

  15. Approximation Algorithm exponential T = T ��� ( G, v ) 1 correlation decay: preserve degrees 4 2 3 error= ����� − R σ Λ ∩ B R σ Λ ∩ B ����� 6 4 3 5 = ��� ( − �������� ∂ B ) 5 error decreases 1 6 1 5 6 exponentially in depth 4 4 ∂ B 5 5 4 4 6 6 poly-time on 4 4 O(1) -degree graphs 4 4 Correlation Decay!

  16. T echnique • amortized analysis of decay: • the potential method; • Computationally Efficient Correlation Decay : dealing with unbounded-degree graphs;

  17. Uniqueness Threshold T d infinite ( d +1) -regular tree � Uniqueness of Gibbs measure (Bethe lattice, Cayley tree) � d � β x + 1 f ( x ) = x + γ x = f (ˆ ˆ x ) | f � (ˆ x ) | < 1

  18. Uniqueness Threshold � �� � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � �� � d � � � � � � � � � � � � � � �� � � � � β x + 1 � f ( x ) = x + γ �� � � 1.11017 x = f (ˆ ˆ x ) � � � � � � � � � � � �� � | f � (ˆ x ) | < 1 for all d � � �� � � �� � � �� � � � 0 ≤ β < 1 < γ

  19. Correlation Decay T = T ��� ( G, v ) anti-ferromagnetic βγ < 1 1 δ = R ����� − R ����� d β R σ Λ T i + 1 = f ( R σ Λ T 1 , . . . , R σ Λ � T d ) R σ Λ = R σ Λ T T i + γ i =1 4 monotonically decreasing 2 3 6 6 4 3 5 upper bound = f ( lower bounds ) lower bound = f ( upper bounds ) 5 1 6 1 5 6 v ∈ Λ fixed to be 0 4 4 ∆ 5 5 4 4 6 6 R ∈ [0 , ∞ ) lower=upper= ∞ 4 4 4 4 v ∈ Λ fixed to be 1 lower=upper= 0 Goal: δ = ��� ( − Ω ( �������� ∆ ))

  20. Cheating: R v ≤ R σ Λ ≤ R v + δ v T � d � β x + 1 f ( x ) = x ∈ [ R v , R v + δ v ] x + γ v T v 1 v 2 v d T d T 1 x d x 1 [ R v d , R v d + δ v d ] [ R v 1 , R v 1 + δ v 1 ] d β x i + 1 we do not always have � f ( x 1 , . . . , x d ) = | f � ( x ) | < 1 x i + γ i =1 δ ������ δ ����� | f � ( x ) | Φ ( x ) Φ ( x ������ ) ≤ α · α = < 1 Φ ( x ����� ) Φ ( f ( x )) D +1 +1 2 D ( β x + 1) Φ ( x ) = x

  21. D +1 +1 2 D ( β x + 1) Φ ( x ) = x x ∈ [ R v , R v + δ v ] v T v 1 v 2 v d T d T 1 x d x 1 [ R v d , R v d + δ v d ] [ R v 1 , R v 1 + δ v 1 ] Mean Value Thms d β x i + 1 � f ( x 1 , . . . , x d ) = x i + γ i =1

  22. Jensen’s Inequality d ( D − 1) D +1 2 D ( β x + 1) d (1 − βγ ) x 2 D α ( d, x ) = � � � d � ( x + γ ) 1+ d ( D − 1) β x +1 + 1 β 2 D x + γ Φ ( x ) Φ ( f ( x )) | f � ( x ) | =

  23. x ∈ [ R v , R v + δ v ] D +1 +1 2 D ( β x + 1) Φ ( x ) = x v T v 1 v 2 v d T d T 1 x d x 1 [ R v d , R v d + δ v d ] [ R v 1 , R v 1 + δ v 1 ] d ( D − 1) D +1 2 D ( β x + 1) d (1 − βγ ) x 2 D α ( d, x ) = � � � d � ( x + γ ) 1+ d ( D − 1) β x +1 + 1 β 2 D x + γ if

  24. d ( D − 1) D +1 2 D ( β x + 1) d (1 − βγ ) x 2 D α ( d, x ) = � � � d � ( x + γ ) 1+ d ( D − 1) β x +1 + 1 β 2 D x + γ

  25. R v ≤ R σ Λ ≤ R v + δ v T T = T ��� ( G, v ) x ∈ [ R v , R v + δ v ] 1 δ = R ����� − R ����� v T 4 2 3 v 1 v 2 v d T d T 1 x d x 1 6 6 4 3 5 [ R v d , R v d + δ v d ] [ R v 1 , R v 1 + δ v 1 ] 5 1 6 1 5 6 4 4 5 5 4 4 6 6 R ∈ [0 , ∞ ) 4 4 4 4 δ = ��� ( − Ω ( �������� ∆ ))

  26. Computationally Efficient Correlation Decay v T x ∈ [ R v , R v + δ v ] v 1 v 2 v d T d T 1 x d x 1 [ R v d , R v d + δ v d ] [ R v 1 , R v 1 + δ v 1 ] d ( D − 1) D +1 2 D ( β x + 1) d (1 − βγ ) x 2 D α ( d, x ) = � � � d � ( x + γ ) 1+ d ( D − 1) β x +1 + 1 β 2 D x + γ for some

  27. Computationally Efficient Correlation Decay v T x ∈ [ R v , R v + δ v ] v 1 v 2 v d T d T 1 x d x 1 [ R v d , R v d + δ v d ] [ R v 1 , R v 1 + δ v 1 ] for some α ( d, x ) for small one-step recursion decays for large one-step recursion decays steps! behaves like

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend