generalised serre green naghdi equations for open channel
play

Generalised Serre-Green-Naghdi equations for open channel and for - PowerPoint PPT Presentation

Generalised Serre-Green-Naghdi equations for open channel and for natural river hydraulics Debyaoui, M.A. 1 Ersoy, M. 1 a 1 IMATH, Universit e de Toulon 2020, 20 October CMI, Marseille a. Mehmet.Ersoy@univ-tln.fr Motivations Modelling of


  1. Geometric set-up & Equations Incompressible and irrotational Euler equations div( ρ 0 u ) = 0 , ∂ ∂t ( ρ 0 u ) + div( ρ 0 u ⊗ u ) + ∇ p − ρ 0 F = 0 with u = ( u, v, w ) : velocity field ρ 0 : density F = (0 , 0 , − g ) : external force p : pressure M. Ersoy (IMATH) 3D-1D 2020, 20 October 5 / 21

  2. Geometric set-up & Equations Incompressible and irrotational Euler equations div( ρ 0 u ) = 0 , ∂ ∂t ( ρ 0 u ) + div( ρ 0 u ⊗ u ) + ∇ p − ρ 0 F = 0 with completed with the irrotational relations u = ( u, v, w ) : velocity field ∂y = ∂v ∂u ∂x, ∂v ∂z = ∂w ∂y , ∂u ∂z = ∂w ρ 0 : density ∂x . F = (0 , 0 , − g ) : external force p : pressure M. Ersoy (IMATH) 3D-1D 2020, 20 October 5 / 21

  3. Geometric set-up & Equations Incompressible and irrotational Euler equations div( ρ 0 u ) = 0 , ∂ ∂t ( ρ 0 u ) + div( ρ 0 u ⊗ u ) + ∇ p − ρ 0 F = 0 with completed with the irrotational relations u = ( u, v, w ) : velocity field ∂y = ∂v ∂u ∂x, ∂v ∂z = ∂w ∂y , ∂u ∂z = ∂w ρ 0 : density ∂x . F = (0 , 0 , − g ) : external force p : pressure M. Ersoy (IMATH) 3D-1D 2020, 20 October 5 / 21

  4. Geometric set-up & Equations Incompressible and irrotational Euler equations div( ρ 0 u ) = 0 , ∂ ∂t ( ρ 0 u ) + div( ρ 0 u ⊗ u ) + ∇ p − ρ 0 F = 0 free surface kinematic boundary condition, u · n fs = ∂ ∂t m · n fs and p = p 0 , ∀ m ( t, x, y ) = ( x, y, η ( t, x, y )) ∈ Γ fs ( t, x ) no-penetration condition on the wet boundary u · n wb = 0 , ∀ m ( x, y ) = ( x, y, d ( x, y )) ∈ Γ wb ( x ) M. Ersoy (IMATH) 3D-1D 2020, 20 October 5 / 21

  5. Rescaling and asymptotic regime Let us define the dispersive parameters µ 1 = h 2 1 L 2 µ 2 = H 2 2 L 2 , such that h 1 < H 1 = H 2 ≪ L, i.e. µ 1 < µ 2 2 where H 1 : characteristic scale of channel width h 1 : characteristic wave-length in the transversal direction H 2 : characteristic water depth U √ gH 2 F r = : Froude’s number T = L : characteristic time U P = U 2 : characteristic pressure X : characteristic length of x M. Ersoy (IMATH) 3D-1D 2020, 20 October 6 / 21

  6. Rescaling and asymptotic regime Then, define the dimensionless variables x = x P = P ϕ = ϕ � � L, P , � , h 1 y = y u = u d = d � � , � U , , h 1 H 2 z = z v = v v η = η , V = √ µ 1 U , . � � � H 2 H 2 t = t w = w w � T , = √ µ 2 U . � W M. Ersoy (IMATH) 3D-1D 2020, 20 October 6 / 21

  7. Rescaling and asymptotic regime We get ∂u ∂x + ∂v ∂y + ∂w ∂z = 0 ∂u ∂t + u∂u ∂x + v ∂u ∂y + w∂u ∂z + ∂P ∂x = 0 � ∂v � ∂t + u∂v ∂x + v ∂v ∂y + w∂v + ∂P µ 1 ∂y = 0 ∂z � ∂w � ∂t + u∂w ∂x + v ∂w ∂y + w∂w + ∂P ∂z = − 1 µ 2 2 ∂z F r and ∂u ∂v ∂v ∂w ∂y , ∂u ∂w ∂y = µ 1 ∂x, µ 1 ∂z = µ 2 ∂z = µ 2 ∂x . M. Ersoy (IMATH) 3D-1D 2020, 20 October 6 / 21

  8. ”Coulisses” I : why µ 1 � = µ 2 ? µ 1 = µ 2 ⇒ no analytical expression of the asymptotic terms. M. Ersoy (IMATH) 3D-1D 2020, 20 October 7 / 21

  9. ”Coulisses” I : why µ 1 � = µ 2 ? µ 1 = µ 2 ⇒ no analytical expression of the asymptotic terms. Indeed, in 2D-1D reduction, we proceed as follows u x + w z = 0 M. Ersoy (IMATH) 3D-1D 2020, 20 October 7 / 21

  10. ”Coulisses” I : why µ 1 � = µ 2 ? µ 1 = µ 2 ⇒ no analytical expression of the asymptotic terms. Indeed, in 2D-1D reduction, we proceed as follows �� z � u x + w z = 0 +BC ⇒ w ( t, x, z ) = − u ( t, x, z ) dz d x M. Ersoy (IMATH) 3D-1D 2020, 20 October 7 / 21

  11. ”Coulisses” I : why µ 1 � = µ 2 ? µ 1 = µ 2 ⇒ no analytical expression of the asymptotic terms. Indeed, in 2D-1D reduction, we proceed as follows �� z � u x + w z = 0 +BC ⇒ w ( t, x, z ) = − u ( t, x, z ) dz d x u z = µw x M. Ersoy (IMATH) 3D-1D 2020, 20 October 7 / 21

  12. ”Coulisses” I : why µ 1 � = µ 2 ? µ 1 = µ 2 ⇒ no analytical expression of the asymptotic terms. Indeed, in 2D-1D reduction, we proceed as follows �� z � u x + w z = 0 +BC ⇒ w ( t, x, z ) = − u ( t, x, z ) dz d x � z u z = µw x ⇒ u ( t, x, z ) = u | z = d ( t, x ) + µ w x ( t, x, z ) dz d M. Ersoy (IMATH) 3D-1D 2020, 20 October 7 / 21

  13. ”Coulisses” I : why µ 1 � = µ 2 ? µ 1 = µ 2 ⇒ no analytical expression of the asymptotic terms. Indeed, in 2D-1D reduction, we proceed as follows �� z � u x + w z = 0 +BC ⇒ w ( t, x, z ) = − u ( t, x, z ) dz d x � z u z = µw x ⇒ u ( t, x, z ) = u | z = d ( t, x ) + µ w x ( t, x, z ) dz ⇒ �� z � d w ( t, x, z ) = − u | z = d ( t, x ) dz + O ( µ ) d x M. Ersoy (IMATH) 3D-1D 2020, 20 October 7 / 21

  14. ”Coulisses” I : why µ 1 � = µ 2 ? µ 1 = µ 2 ⇒ no analytical expression of the asymptotic terms. Indeed, in 2D-1D reduction, we proceed as follows �� z � u x + w z = 0 +BC ⇒ w ( t, x, z ) = − u ( t, x, z ) dz d x � z u z = µw x ⇒ u ( t, x, z ) = u | z = d ( t, x ) + µ w x ( t, x, z ) dz ⇒ �� z � d w ( t, x, z ) = − u | z = d ( t, x ) dz + O ( µ ) d x ⇒ u ( t, x, z ) = f 1 ( u | z = d ( t, x )) + µf 2 ( z, u | z = d ( t, x ) , d ( x )) + O ( µ 2 ) ⇒ u | z = d = f 3 (¯ u ( t, x )) . . . M. Ersoy (IMATH) 3D-1D 2020, 20 October 7 / 21

  15. ”Coulisses” I : why µ 1 � = µ 2 ? µ 1 = µ 2 ⇒ no analytical expression of the asymptotic terms. Indeed, in 3D-1D reduction, we proceed as follows � u x + v y + w z = 0 ⇒ v y + w z dydz . . . Ω M. Ersoy (IMATH) 3D-1D 2020, 20 October 7 / 21

  16. ”Coulisses” I : why µ 1 � = µ 2 ? µ 1 = µ 2 ⇒ no analytical expression of the asymptotic terms. Indeed, in 3D-1D reduction, we proceed as follows � u x + v y + w z = 0 ⇒ v y + w z dydz . . . Ω Therefore, we assume µ 1 � = µ 2 . M. Ersoy (IMATH) 3D-1D 2020, 20 October 7 / 21

  17. ”Coulisses” II : why introduce h 1 < H 1 ? A counter example if h 1 = H 1 : Consider the (nondimensional) rectangular channel � � � � 0 , H 1 0 , L c (˜ x, ˜ y, ˜ z ) ∈ × × [0 , 1] where L ≪ L c . L h 1 M. Ersoy (IMATH) 3D-1D 2020, 20 October 8 / 21

  18. ”Coulisses” II : why introduce h 1 < H 1 ? A counter example if h 1 = H 1 : Consider the (nondimensional) rectangular channel � � � � 0 , H 1 0 , L c (˜ x, ˜ y, ˜ z ) ∈ × × [0 , 1] where L ≪ L c . L h 1 w ) T = ∇ ˜ Incompressible + Irrotational ⇒ ∃ ˜ φ ; (˜ u, ˜ v, ˜ φ solution of φ + 1 φ + 1 x ˜ y ˜ z ˜ ∂ 2 ∂ 2 ∂ 2 φ = 0 . x ˜ ˜ y ˜ ˜ ˜ z ˜ µ 1 µ 2 M. Ersoy (IMATH) 3D-1D 2020, 20 October 8 / 21

  19. ”Coulisses” II : why introduce h 1 < H 1 ? A counter example if h 1 = H 1 : Consider the (nondimensional) rectangular channel � � � � 0 , H 1 0 , L c (˜ x, ˜ y, ˜ z ) ∈ × × [0 , 1] where L ≪ L c . L h 1 w ) T = ∇ ˜ Incompressible + Irrotational ⇒ ∃ ˜ φ ; (˜ u, ˜ v, ˜ φ More precisely, ∀ ( p, q ) ∈ N 2 , we have : � � � � � � � cosh h 2 p 2 µ 2 L 2 c + q 2 µ 2 π ˜ z 1 pπ ˜ xL qπ ˜ yh 1 L 2 µ 1 H 2 ˜ 1 φ p,q ( x, y, z ) = cos cos � � � . L c H 1 h 2 p 2 µ 2 L 2 c + q 2 µ 2 cosh π 1 L 2 H 2 µ 1 1 M. Ersoy (IMATH) 3D-1D 2020, 20 October 8 / 21

  20. ”Coulisses” II : why introduce h 1 < H 1 ? A counter example if h 1 = H 1 : Consider the (nondimensional) rectangular channel � � � � 0 , H 1 0 , L c (˜ x, ˜ y, ˜ z ) ∈ × × [0 , 1] where L ≪ L c . L h 1 w ) T = ∇ ˜ Incompressible + Irrotational ⇒ ∃ ˜ φ ; (˜ u, ˜ v, ˜ φ More precisely, ∀ ( p, q ) ∈ N 2 , we have : � � � � � � � cosh h 2 p 2 µ 2 L 2 c + q 2 µ 2 π ˜ z 1 pπ ˜ xL qπ ˜ yh 1 L 2 µ 1 H 2 ˜ 1 φ p,q ( x, y, z ) = cos cos � � � . L c H 1 h 2 p 2 µ 2 L 2 c + q 2 µ 2 cosh π 1 L 2 H 2 µ 1 1 Keeping in mind that H 2 < L ≪ L c , ◮ if h 1 = H 1 < H 2 then p 2 µ 2 L 2 + q 2 µ 2 x ˜ µ 1 ⇒ ˜ u = ∂ ˜ φ is rapidly varying in ˜ z L 2 c unless H 1 > H 2 (out of context) M. Ersoy (IMATH) 3D-1D 2020, 20 October 8 / 21

  21. ”Coulisses” II : why introduce h 1 < H 1 ? A counter example if h 1 = H 1 : Consider the (nondimensional) rectangular channel � � � � 0 , H 1 0 , L c (˜ x, ˜ y, ˜ z ) ∈ × × [0 , 1] where L ≪ L c . L h 1 w ) T = ∇ ˜ Incompressible + Irrotational ⇒ ∃ ˜ φ ; (˜ u, ˜ v, ˜ φ More precisely, ∀ ( p, q ) ∈ N 2 , we have : � � � � � � � cosh h 2 p 2 µ 2 L 2 c + q 2 µ 2 π ˜ z 1 pπ ˜ xL qπ ˜ yh 1 L 2 µ 1 H 2 ˜ 1 φ p,q ( x, y, z ) = cos cos � � � . L c H 1 h 2 p 2 µ 2 L 2 c + q 2 µ 2 cosh π 1 L 2 H 2 µ 1 1 Keeping in mind that H 2 < L ≪ L c , ◮ if h 1 = H 1 < H 2 then is rapidly varying in ˜ z ◮ Therefore, we consider h 1 < H 1 = H 2 : p 2 µ 2 L 2 h 2 = p 2 H 2 + q 2 H 2 + q 2 µ 2 1 2 2 L 2 H 2 L 2 H 2 µ 1 c 1 c 1 M. Ersoy (IMATH) 3D-1D 2020, 20 October 8 / 21

  22. ”Coulisses” III : order of integration ” Coulisses”II naturally yields to V < W < U where ( U, V = √ µ 1 U, W = √ µ 2 U ) As a consequence, we proceed as follows ◮ 3D-2D reduction (width averaging) ◮ 2D-1D reduction (depth averaging) ◮ 3D-1D reduction (section averaging) M. Ersoy (IMATH) 3D-1D 2020, 20 October 9 / 21

  23. ”Coulisses” III : order of integration ” Coulisses”II naturally yields to V < W < U where ( U, V = √ µ 1 U, W = √ µ 2 U ) As a consequence, we proceed as follows ◮ 3D-2D reduction (width averaging) : u ( t, x, y, z ) = � u � ( t, x, z ) + O ( µ 1 ) ◮ 2D-1D reduction (depth averaging) ◮ 3D-1D reduction (section averaging) M. Ersoy (IMATH) 3D-1D 2020, 20 October 9 / 21

  24. ”Coulisses” III : order of integration ” Coulisses”II naturally yields to V < W < U where ( U, V = √ µ 1 U, W = √ µ 2 U ) As a consequence, we proceed as follows ◮ 3D-2D reduction (width averaging) : u ( t, x, y, z ) = � u � ( t, x, z ) + O ( µ 1 ) ◮ 2D-1D reduction (depth averaging) : � u � ( t, x, z ) = u ( t, x ) + µ 2 f ( u ( t, x ) , Ω( t, x )) + O ( µ 2 2 ) where u ( t, x ) is the section-averaged velocity ◮ 3D-1D reduction (section averaging) M. Ersoy (IMATH) 3D-1D 2020, 20 October 9 / 21

  25. ”Coulisses” III : order of integration ” Coulisses”II naturally yields to V < W < U where ( U, V = √ µ 1 U, W = √ µ 2 U ) As a consequence, we proceed as follows ◮ 3D-2D reduction (width averaging) : u ( t, x, y, z ) = � u � ( t, x, z ) + O ( µ 1 ) ◮ 2D-1D reduction (depth averaging) : � u � ( t, x, z ) = u ( t, x ) + µ 2 f ( u ( t, x ) , Ω( t, x )) + O ( µ 2 2 ) where u ( t, x ) is the section-averaged velocity ◮ 3D-1D reduction (section averaging) : u ( t, x, y, z ) = u ( t, x ) + µ 2 f ( u ( t, x ) , Ω( t, x )) + O ( µ 2 2 ) M. Ersoy (IMATH) 3D-1D 2020, 20 October 9 / 21

  26. Outline Outline 1 Derivation (based on Euler equations) 3D-2D 2D-1D 3D-1D 2 Improved model and stability Reformulated and stable models Invertible operator 3 Numerical analysis and test case Finite Volume scheme Numerical simulation 4 Conclusion and perspectives M. Ersoy (IMATH) 3D-1D 2020, 20 October 9 / 21

  27. Step 1 : 3D-2D reduction Div and irrotational equations ⇒ noting X α ( t, x, z ) := X ( t, x, α ( x, z ) , z ) we have � µ 2 u α ( t, x, z ) − µ 1 ∂ � w α ( t, x, z )( y − α ( x, z )) 2 � 1 � u ( t, x, y, z ) = ∂x div x,z + O 2 µ 2 and � µ 2 � w α ( t, x, z ) − µ 1 ∂ w α ( t, x, z )( y − α ( x, z )) 2 � 1 � w ( t, x, y, z ) = ∂z div x,z + O µ 2 2 µ 2 2 M. Ersoy (IMATH) 3D-1D 2020, 20 October 10 / 21

  28. Step 1 : 3D-2D reduction Width-averaging ⇒ noting � β ( x,z ) 1 � X � ( t, x, z ) := X ( t, x, y, z ) dy σ ( x, z ) α ( x,z ) we have � µ 2 σ ( x, z ) u α ( t, x, z ) − µ 1 ∂ � w α ( t, x, z ) σ ( x, z ) 3 � 1 � σ ( x, z ) � u � ( t, x, z ) = ∂x div x,z + O , 6 µ 2 � µ 2 � σ ( x, z ) w α ( t, x, z ) − µ 1 ∂ w α ( t, x, z ) σ ( x, z ) 3 � 1 σ ( x, z ) � w � ( t, x, z ) = ∂z div x,z � + O µ 2 6 µ 2 2 where σ ( x, z ) = β ( x, z ) − α ( x, z ) is the width of the section at the elevation z . M. Ersoy (IMATH) 3D-1D 2020, 20 October 10 / 21

  29. Step 1 : 3D-2D reduction Width-averaging ⇒ � η ( t,x,y ) P ( t, x, y, z ) = P α ( t, x, z )+ O ( µ 1 ) = η ( t, x, y ) − z D + µ 2 Dtw α ( t, x, z ) ds + O ( µ 1 ) F r 2 z (a) Initial a . Debyaoui, Ersoy, Asymptotic Analysis, 2020 M. Ersoy (IMATH) 3D-1D 2020, 20 October 10 / 21

  30. Step 1 : 3D-2D reduction Width-averaging ⇒ � η ( t,x,y ) P ( t, x, y, z ) = P α ( t, x, z )+ O ( µ 1 ) = η ( t, x, y ) − z D + µ 2 Dtw α ( t, x, z ) ds + O ( µ 1 ) F r 2 z ⇓ Flat free surface approximation a : η ( t, x, y ) = η eq ( t, x ) + O ( µ 1 ) ⇒ (c) Initial (d) Flat FS approximation a . Debyaoui, Ersoy, Asymptotic Analysis, 2020 M. Ersoy (IMATH) 3D-1D 2020, 20 October 10 / 21

  31. Step 1 : 3D-2D reduction Width-averaging ⇒ we get the 2D width-averaged model � µ 2 � µ 1 ∂ σ ∂ � w α σ 3 ��� � � 1 div x,z [ σ w α ] + O = div x,z µ 2 6 µ 2 ∂z ∂z 2 � � µ 2 ∂t ( σu α ) + div x,z [ σu α w α ] + ∂ ∂ ∂σ 1 ∂x ( σP α ) + O = P α µ 2 ∂x 2 + µ 1 ∂ � ∂ w α σ 3 �� � u α ∂z div x,z 6 µ 2 ∂x � ∂ � + ∂ − σ µ 2 ∂t ( σw α ) + div x,z [ σw α w α ] ∂z ( σP α ) = F r 2 ∂σ + P α ∂z + O ( µ 1 ) completed with the irrotational equation ∂u α ∂w α ∂z = µ 2 ∂x + O ( µ 1 ) M. Ersoy (IMATH) 3D-1D 2020, 20 October 10 / 21

  32. Outline Outline 1 Derivation (based on Euler equations) 3D-2D 2D-1D 3D-1D 2 Improved model and stability Reformulated and stable models Invertible operator 3 Numerical analysis and test case Finite Volume scheme Numerical simulation 4 Conclusion and perspectives M. Ersoy (IMATH) 3D-1D 2020, 20 October 10 / 21

  33. Step 2 : 2D-1D reduction Div and irrotational equations (model 2D) ⇒ noting � z 1 ∂ f b ( t, x ) = f α ( t, x, d ∗ ( x )) , S ( u, x, z ) = ∂x ( uS ( x, z )) , S ( x, z ) = σ ( x, s ) ds σ ( x, z ) d ∗ ( x ) we have � z ∂ ∂x S ( u b , x, s ) ds + O ( µ 2 u α ( t, x, z ) = u b ( t, x ) − µ 2 2 ) d ∗ ( x ) and 1 ∂ w α ( t, x, z ) = − ∂x ( u b ( t, x ) S ( x, z )) + O ( µ 2 ) σ ( x, z ) M. Ersoy (IMATH) 3D-1D 2020, 20 October 11 / 21

  34. Step 2 : 2D-1D reduction Depth-averaging ⇒ noting � η eq ( t,x ) � β ( x,z ) 1 ¯ u eq = u ( t, x, y, z ) dydz A eq ( t, x ) d ∗ ( x ) α ( x,z ) we get u b ( t, x ) = u eq ( t, x ) ¯ �� z � � η eq ( t,x ) µ 2 ∂ + σ ( x, z ) ∂x S (¯ u eq ( t, x ) , x, s ) ds dz A eq ( t, x ) d ∗ ( x ) d ∗ ( x ) + O ( µ 2 2 ) M. Ersoy (IMATH) 3D-1D 2020, 20 October 11 / 21

  35. Step 2 : 2D-1D reduction Depth-averaging ⇒ finally, u eq , x, z ) + O ( µ 2 u ( t, x, y, z ) = ¯ u eq ( t, x ) + µ 2 B 0 (¯ 2 ) with � � � η eq ( t,x ) � z 1 ∂ B 0 (¯ u eq , x, z ) = σ ( x, z ) ∂x S (¯ u eq ( t, x ) , x, s ) ds dz A eq ( t, x ) d ∗ ( x ) d ∗ ( x ) � z ∂ − ∂x S (¯ u eq ( t, x ) , x, s ) ds d ∗ ( x ) M. Ersoy (IMATH) 3D-1D 2020, 20 October 11 / 21

  36. Step 2 : 2D-1D reduction Depth-averaging ⇒ we also have P ( t, x, y, z ) = P h ( t, x, z ) + µ 2 P nh ( t, x, z ) + O ( µ 2 2 ) where P h ( t, x, z ) = ( z − η eq ( t, x )) 2 F r and � η eq ( t,x ) � u eq ( t, x ) , x, s )) 2 � 1 ∂ P nh ( t, x, z ) = ( σ ( x, s ) S (¯ ds 2 σ ( x, s ) 2 ∂z z � η eq ( t,x ) ∂ − ∂t S (¯ u eq ( t, x ) , x, s ) z + ¯ u eq ( t, x ) ∂ ∂x ( σ ( x, s ) S (¯ u eq ( t, x ) , x, s )) ds σ ( x, s ) M. Ersoy (IMATH) 3D-1D 2020, 20 October 11 / 21

  37. Outline Outline 1 Derivation (based on Euler equations) 3D-2D 2D-1D 3D-1D 2 Improved model and stability Reformulated and stable models Invertible operator 3 Numerical analysis and test case Finite Volume scheme Numerical simulation 4 Conclusion and perspectives M. Ersoy (IMATH) 3D-1D 2020, 20 October 11 / 21

  38. Step 3 : 3D-1D reduction Euler equations in Ω eq instead of Ω M. Ersoy (IMATH) 3D-1D 2020, 20 October 12 / 21

  39. Step 3 : 3D-1D reduction Euler equations in Ω eq instead of Ω Boundary condition : � ∂ � � ∂t M + u ∂ ∂x M − v · n ds = 0 ∂ Ω eq ( t,x ) M. Ersoy (IMATH) 3D-1D 2020, 20 October 12 / 21

  40. Step 3 : 3D-1D reduction Euler equations in Ω eq instead of Ω Boundary condition : � ∂ � � ∂t M + u ∂ ∂x M − v · n ds = 0 ∂ Ω eq ( t,x ) Introduce wet region indicator function Φ which satisfies � ∂t Φ + ∂ ∂ ∂x (Φ u ) + div y,z [Φ v ] = 0 on Ω eq ( t ) = Ω eq ( t, x ) . 0 ≤ x ≤ 1 where v = ( v, w ) . M. Ersoy (IMATH) 3D-1D 2020, 20 October 12 / 21

  41. Step 3 : 3D-1D reduction Euler equations in Ω eq instead of Ω Boundary condition : � ∂ � � ∂t M + u ∂ ∂x M − v · n ds = 0 ∂ Ω eq ( t,x ) Introduce wet region indicator function Φ which satisfies � ∂t Φ + ∂ ∂ ∂x (Φ u ) + div y,z [Φ v ] = 0 on Ω eq ( t ) = Ω eq ( t, x ) . 0 ≤ x ≤ 1 where v = ( v, w ) . Section-averaging equations using the approximation u eq , x, z ) + O ( µ 2 u ( t, x, y, z ) = u eq ( t, x ) + µ 2 B 0 (¯ ¯ 2 ) η ( t, x, y ) = η eq ( t, x ) + O ( µ 1 ) P h ( t, x, z ) + µ 2 P nh ( t, x, z ) + O ( µ 2 P ( t, x, y, z ) = 2 ) M. Ersoy (IMATH) 3D-1D 2020, 20 October 12 / 21

  42. The new 1D nonlinear and dispersive model  ∂tA eq + ∂ ∂   ∂xQ eq = 0   � Q eq � 2 ∂tQ eq + ∂ ∂ ∂ + I 1 ( x, A eq ) + µ 2 ∂x ( DI 1 ( x, A eq , Q eq )) =   ∂x A eq   I 2 ( x, A eq ) + µ 2 DI 2 ( x, A eq , Q eq ) + O ( µ 2 2 ) where � A eq = dy dz : wet area Ω eq ( t,x ) Q eq = A eq ( t, x )¯ u eq ( t, x ) : discharge ◮ Debyaoui, Ersoy. Asymptotic Analysis, 2020 M. Ersoy (IMATH) 3D-1D 2020, 20 October 13 / 21

  43. The new 1D nonlinear and dispersive model  ∂tA eq + ∂ ∂   ∂xQ eq = 0   � Q eq � 2 ∂tQ eq + ∂ ∂ ∂ + I 1 ( x, A eq ) + µ 2 ∂x ( DI 1 ( x, A eq , Q eq )) =   ∂x A eq   I 2 ( x, A eq ) + µ 2 DI 2 ( x, A eq , Q eq ) + O ( µ 2 2 ) where � η eq ( t, x ) − z I 1 = σ ( x, z ) dy dz : hydro. press. F 2 Ω eq ( t,x ) r � y + ( t,x ) h eq ( t, x ) ∂ I 2 = − ∂xd ( x, y ) dy : hydro. press. source F r 2 y − ( t,x ) ◮ Debyaoui, Ersoy. Asymptotic Analysis, 2020 M. Ersoy (IMATH) 3D-1D 2020, 20 October 13 / 21

  44. The new 1D nonlinear and dispersive model  ∂tA eq + ∂ ∂   ∂xQ eq = 0   � Q eq � 2 ∂tQ eq + ∂ ∂ ∂ + I 1 ( x, A eq ) + µ 2 ∂x ( DI 1 ( x, A eq , Q eq )) =   ∂x A eq   I 2 ( x, A eq ) + µ 2 DI 2 ( x, A eq , Q eq ) + O ( µ 2 2 ) where � DI 1 = P nh ( t, x, z ) dy dz : (disp) non hydro. press. Ω eq ( t,x ) � y + ( t,x ) P nh ( t, x, d ( x, y )) ∂ DI 2 = − ∂xd ( x, y ) dy : (disp) non hydro. press. source y − ( t,x ) ◮ Debyaoui, Ersoy. Asymptotic Analysis, 2020 M. Ersoy (IMATH) 3D-1D 2020, 20 October 13 / 21

  45. The new 1D nonlinear and dispersive model  ∂tA eq + ∂ ∂   ∂xQ eq = 0   � Q eq � 2 ∂tQ eq + ∂ ∂ ∂ + I 1 ( x, A eq ) + µ 2 ∂x ( DI 1 ( x, A eq , Q eq )) =   ∂x A eq   I 2 ( x, A eq ) + µ 2 DI 2 ( x, A eq , Q eq ) + O ( µ 2 2 ) Remark (Generalisation of the free surface model) Setting µ 2 = 0 , we recover the usual nlsw equations for open channel. ◮ Bourdarias, Ersoy, Gerbi. Science China Mathematics, 2012. ◮ Debyaoui, Ersoy. Asymptotic Analysis, 2020 M. Ersoy (IMATH) 3D-1D 2020, 20 October 13 / 21

  46. Reformulation : generalization of the SGN equations  ∂tA eq + ∂ ∂  ∂xQ eq = 0    � Q eq � 2 ∂tQ eq + ∂ ∂ ∂ + I 1 ( x, A eq ) + µ 2 ∂x ( D (¯ u eq ) G ( A eq , x )) = I 2 ( x, A eq )   ∂x A eq   u eq , S, σ ) + O ( µ 2 + µ 2 G (¯ 2 ) M. Ersoy (IMATH) 3D-1D 2020, 20 October 14 / 21

  47. Reformulation : generalization of the SGN equations  ∂tA eq + ∂ ∂  ∂xQ eq = 0    � Q eq � 2 ∂tQ eq + ∂ ∂ ∂ + I 1 ( x, A eq ) + µ 2 ∂x ( D (¯ u eq ) G ( A eq , x )) = I 2 ( x, A eq )   ∂x A eq   u eq , S, σ ) + O ( µ 2 + µ 2 G (¯ 2 ) where � ∂ � 2 − ∂ ∂ ∂ ∂ D (¯ u eq ) = ∂x ¯ u eq ∂x ¯ u eq − ¯ u eq ∂x ¯ u eq ∂t ∂x and � η eq � η eq S ( x, s ) G ( A eq , x ) = σ ( x, z ) σ ( x, s ) ds dz d ∗ ( x ) z M. Ersoy (IMATH) 3D-1D 2020, 20 October 14 / 21

  48. Reformulation : generalization of the SGN equations  ∂tA eq + ∂ ∂  ∂xQ eq = 0    � Q eq � 2 ∂tQ eq + ∂ ∂ ∂ + I 1 ( x, A eq ) + µ 2 ∂x ( D (¯ u eq ) G ( A eq , x )) = I 2 ( x, A eq )   ∂x A eq   u eq , S, σ ) + O ( µ 2 + µ 2 G (¯ 2 ) where   ∂xS ( x, s ) ∂ ∂ � η eq ∂xσ ( x, s ) u 2 − ∂ ∂   G ( u, S, σ ) = ∂xS ( x, s )   σ ( x, s ) σ ( x, s ) ∂x z � S ( x, s ) ∂ � u 2 ∂xσ ( x, s ) . + ∂ σ ( x, s ) 2 ∂x 2 � ∂ � ∂ ∂xS ( x, s ) ∂ − ∂t ¯ u eq + ¯ u eq ∂x ¯ u eq ds σ ( x, s ) M. Ersoy (IMATH) 3D-1D 2020, 20 October 14 / 21

  49. Reformulation : generalization of the SGN equations  ∂tA eq + ∂ ∂  ∂xQ eq = 0    � Q eq � 2 ∂tQ eq + ∂ ∂ ∂ + I 1 ( x, A eq ) + µ 2 ∂x ( D (¯ u eq ) G ( A eq , x )) = I 2 ( x, A eq )   ∂x A eq   u eq , S, σ ) + O ( µ 2 + µ 2 G (¯ 2 ) Setting σ = 1 , d = 1 , A eq = h eq S ( x, z ) ≡ S ( z ) ⇒ G = 0 and I 2 = 0 3 G = h eq 3 2 I 1 = h eq 2 F 2 r M. Ersoy (IMATH) 3D-1D 2020, 20 October 14 / 21

  50. Reformulation : generalization of the SGN equations  ∂tA eq + ∂ ∂  ∂xQ eq = 0    � Q eq � 2 ∂tQ eq + ∂ ∂ ∂ + I 1 ( x, A eq ) + µ 2 ∂x ( D (¯ u eq ) G ( A eq , x )) = I 2 ( x, A eq )   ∂x A eq   u eq , S, σ ) + O ( µ 2 + µ 2 G (¯ 2 ) we recover the classical SGN equations on flat bottom  ∂th eq + ∂ ∂   ∂x ( h eq u eq ) = 0 � � � h eq � 2 3 ∂t ( h eq u eq ) + ∂ ∂ 2 + h eq ∂  = O ( µ 2  h eq u eq + µ 2 3 D ( u eq ) 2 ) 2 F 2 ∂x ∂x r M. Ersoy (IMATH) 3D-1D 2020, 20 October 14 / 21

  51. Reformulation : generalization of the SGN equations  ∂tA eq + ∂ ∂  ∂xQ eq = 0    � Q eq � 2 ∂tQ eq + ∂ ∂ ∂ + I 1 ( x, A eq ) + µ 2 ∂x ( D (¯ u eq ) G ( A eq , x )) = I 2 ( x, A eq )   ∂x A eq   u eq , S, σ ) + O ( µ 2 + µ 2 G (¯ 2 ) Remark Dispersive equation are usually characterized by third order term ⇒ may create high frequencies instabilities Figure – Bourdarias, Gerbi, and Ralph Lteif. Computers & Fluids, 156 :283–304, 2017. M. Ersoy (IMATH) 3D-1D 2020, 20 October 14 / 21

  52. Outline Outline 1 Derivation (based on Euler equations) 3D-2D 2D-1D 3D-1D 2 Improved model and stability Reformulated and stable models Invertible operator 3 Numerical analysis and test case Finite Volume scheme Numerical simulation 4 Conclusion and perspectives M. Ersoy (IMATH) 3D-1D 2020, 20 October 14 / 21

  53. Outline Outline 1 Derivation (based on Euler equations) 3D-2D 2D-1D 3D-1D 2 Improved model and stability Reformulated and stable models Invertible operator 3 Numerical analysis and test case Finite Volume scheme Numerical simulation 4 Conclusion and perspectives M. Ersoy (IMATH) 3D-1D 2020, 20 October 14 / 21

  54. A more stable formulation → useful for numerical purpose Define the linear T and the quadratic Q operators � η eq � η eq T [ A eq , d, σ, z ]( u ) = ∂ S ( x, s ) 1 ∂ ∂x ( u ) σ ( x, s ) ds + u ∂xS ( x, s ) ds , σ ( x, s ) z z and � ∂ � 2 S ( x, s ) � η eq G [ A eq , d, σ, z ]( u ) = 2 ∂xu σ ( x, s ) + z   ∂xS ( x, s ) ∂ ∂ ∂xσ ( x, s ) u 2 − ∂ ∂   ∂xS ( x, s )   σ ( x, s ) σ ( x, s ) ∂x � S ( x, s ) ∂ � u 2 ∂xσ ( x, s ) + ∂ ds ∂x 2 σ ( x, s ) 2 M. Ersoy (IMATH) 3D-1D 2020, 20 October 15 / 21

  55. A more stable formulation → useful for numerical purpose Define the linear T and the quadratic Q operators Define the averaged linear T and the quadratic Q operators � η eq T [ A eq , d, σ ]( u, ψ ) = ψ T [ A eq , d, σ, z ]( u ) dz d ∗ ( x ) and � η eq G [ A eq , d, σ ]( u, ψ ) = ψ G [ A eq , d, σ, z ]( u ) dz d ∗ ( x ) M. Ersoy (IMATH) 3D-1D 2020, 20 October 15 / 21

  56. A more stable formulation → useful for numerical purpose Define the linear T and the quadratic Q operators Define the averaged linear T and the quadratic Q operators Define the operators L and Q � u � L [ A eq , d, σ ]( u ) = A eq L [ A eq , d, σ ] A eq and � ∂ � �� � � 1 u, ∂ Q [ A eq , d, σ ]( u ) = G [ A eq , d, σ ] ( u, σ ) − G [ A eq , d, σ ] ∂xσ A eq ∂x M. Ersoy (IMATH) 3D-1D 2020, 20 October 15 / 21

  57. A more stable formulation → useful for numerical purpose Define the linear T and the quadratic Q operators Define the averaged linear T and the quadratic Q operators Define the operators L and Q and finally the operator L � u � L [ A eq , d, σ ]( u ) = A eq L [ A eq , d, σ ] A eq M. Ersoy (IMATH) 3D-1D 2020, 20 October 15 / 21

  58. A more stable formulation → useful for numerical purpose Define the linear T and the quadratic Q operators Define the averaged linear T and the quadratic Q operators Define the operators L and Q and finally the operator L Reformulated model  ∂tA eq + ∂ ∂  ∂x ( A eq u eq ) = 0   � � ∂ 2 �� ∂t ( A eq u eq ) + ∂ + ∂ � � I d − µ 2 L [ A eq , d, σ ] ∂xI 1 ( x, A eq ) A eq u eq   ∂x  + µ 2 A eq Q [ A eq , d, σ ]( u eq ) = I 2 ( x, A eq ) + O ( µ 2 2 ) M. Ersoy (IMATH) 3D-1D 2020, 20 October 15 / 21

  59. A more stable formulation → useful for numerical purpose Define the linear T and the quadratic Q operators Define the averaged linear T and the quadratic Q operators Define the operators L and Q and finally the operator L Reformulated model  ∂tA eq + ∂ ∂  ∂x ( A eq u eq ) = 0   � � ∂ 2 �� ∂t ( A eq u eq ) + ∂ + ∂ � � I d − µ 2 L [ A eq , d, σ ] ∂xI 1 ( x, A eq ) A eq u eq   ∂x  + µ 2 A eq Q [ A eq , d, σ ]( u eq ) = I 2 ( x, A eq ) + O ( µ 2 2 ) Remark Inverting I d − µ 2 L [ A eq , d, σ ] ⇒ no third order term ⇒ more stable formulation ◮ Bonneton, Barth´ elemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011 ◮ Debyaoui, Ersoy. Part 2, preprint, 2020 M. Ersoy (IMATH) 3D-1D 2020, 20 October 15 / 21

  60. A more stable formulation → useful for numerical purpose Define the linear T and the quadratic Q operators Define the averaged linear T and the quadratic Q operators Define the operators L and Q and finally the operator L Reformulated model  ∂tA eq + ∂ ∂  ∂x ( A eq u eq ) = 0   � � ∂ 2 �� ∂t ( A eq u eq ) + ∂ + ∂ � � I d − µ 2 L [ A eq , d, σ ] ∂xI 1 ( x, A eq ) A eq u eq   ∂x  + µ 2 A eq Q [ A eq , d, σ ]( u eq ) = I 2 ( x, A eq ) + O ( µ 2 2 ) Remark A consistent one-parameter family (up to order O ( µ 2 2 ) ) can be introduced to improve the frequency dispersion. ◮ Bonneton, Barth´ elemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011 ◮ Debyaoui, Ersoy. Part 2, preprint, 2020 M. Ersoy (IMATH) 3D-1D 2020, 20 October 15 / 21

  61. A more stable formulation → useful for numerical purpose Define the linear T and the quadratic Q operators Define the averaged linear T and the quadratic Q operators Define the operators L and Q and finally the operator L Reformulated model  ∂tA eq + ∂ ∂   ∂x ( A eq u eq ) = 0   � � ∂ � ∂  + κ − 1 �� ∂t ( A eq u eq ) + ∂ 2 � � � I d − µ 2 κ L [ A eq , d, σ ] ∂xI 1 − I 2 A eq u eq ∂x κ  � ∂   + 1 �   + µ 2 A eq Q [ A eq , d, σ ]( u eq ) = O ( µ 2 ∂xI 1 − I 2 2 ) κ Remark A consistent one-parameter κ > 0 family (up to order O ( µ 2 2 ) ) can be introduced to improve the frequency dispersion. ◮ Bonneton, Barth´ elemy, Chazel, Cienfuegos, Lannes, Marche, and Tissier. European Journal of Mechanics-B/Fluids, 2011 ◮ Debyaoui, Ersoy. Part 2, preprint, 2020 M. Ersoy (IMATH) 3D-1D 2020, 20 October 15 / 21

  62. Outline Outline 1 Derivation (based on Euler equations) 3D-2D 2D-1D 3D-1D 2 Improved model and stability Reformulated and stable models Invertible operator 3 Numerical analysis and test case Finite Volume scheme Numerical simulation 4 Conclusion and perspectives M. Ersoy (IMATH) 3D-1D 2020, 20 October 15 / 21

  63. Invertibility of the operator T = A ( I d − µ 2 L [ A eq , d, σ ]) Theorem Let α , β and d ∈ C ∞ and A ∈ W 1 , ∞ ( R ) such that inf x ∈ R A ≥ A 0 > 0 . Then the b operator T : H 2 ( R ) → L 2 ( R ) is well-defined, one-to-one and onto. ◮ Debyaoui, Ersoy. Part 2, preprint, 2019 M. Ersoy (IMATH) 3D-1D 2020, 20 October 16 / 21

  64. Invertibility of the operator T = A ( I d − µ 2 L [ A eq , d, σ ]) Theorem Let α , β and d ∈ C ∞ and A ∈ W 1 , ∞ ( R ) such that inf x ∈ R A ≥ A 0 > 0 . Then the b operator T : H 2 ( R ) → L 2 ( R ) is well-defined, one-to-one and onto. Let µ 2 ∈ (0 , 1) . Define the space H 1 µ 2 ( R ) the space H 1 ( R ) endowed with the norm � u � 2 µ 2 = � u � 2 2 + µ 2 � u x � 2 2 M. Ersoy (IMATH) 3D-1D 2020, 20 October 16 / 21

  65. Invertibility of the operator T = A ( I d − µ 2 L [ A eq , d, σ ]) Theorem Let α , β and d ∈ C ∞ and A ∈ W 1 , ∞ ( R ) such that inf x ∈ R A ≥ A 0 > 0 . Then the b operator T : H 2 ( R ) → L 2 ( R ) is well-defined, one-to-one and onto. Let µ 2 ∈ (0 , 1) . Define the space H 1 µ 2 ( R ) Define the bilinear form a ( u, v ) a ( u, v ) = ( A T u, v ) = ( Au, v )+ � � � � �� √ √ A 3 A 3 µ 2 A √ − 2 d x u , √ − 2 d x v + ( Ad x u, d x v ) 3 u x 3 v x M. Ersoy (IMATH) 3D-1D 2020, 20 October 16 / 21

  66. Invertibility of the operator T = A ( I d − µ 2 L [ A eq , d, σ ]) Theorem Let α , β and d ∈ C ∞ and A ∈ W 1 , ∞ ( R ) such that inf x ∈ R A ≥ A 0 > 0 . Then the b operator T : H 2 ( R ) → L 2 ( R ) is well-defined, one-to-one and onto. Let µ 2 ∈ (0 , 1) . Define the space H 1 µ 2 ( R ) Define the bilinear form a ( u, v ) Lax-Milgram theorem ∃ ! u ∈ H 1 µ 2 ( R ) ; a ( u, v ) = ( f, v ) , ∀ v ∈ H 1 µ 2 ( R ) , f ∈ L 2 ( R ) ⇓ ∃ ! u ∈ H 1 µ 2 ( R ) ; T u = f From definition of T , we get u xx = g ( A, u, d, σ ) ∈ L 2 ( R ) ⇒ u ∈ H 2 ( R ) . M. Ersoy (IMATH) 3D-1D 2020, 20 October 16 / 21

  67. Outline Outline 1 Derivation (based on Euler equations) 3D-2D 2D-1D 3D-1D 2 Improved model and stability Reformulated and stable models Invertible operator 3 Numerical analysis and test case Finite Volume scheme Numerical simulation 4 Conclusion and perspectives M. Ersoy (IMATH) 3D-1D 2020, 20 October 16 / 21

  68. Outline Outline 1 Derivation (based on Euler equations) 3D-2D 2D-1D 3D-1D 2 Improved model and stability Reformulated and stable models Invertible operator 3 Numerical analysis and test case Finite Volume scheme Numerical simulation 4 Conclusion and perspectives M. Ersoy (IMATH) 3D-1D 2020, 20 October 16 / 21

  69. Numerical scheme : hyperbolic part We consider a classical Finite Volume scheme, U = ( A, Q ) i − δt n � � U n +1 = U n F i +1 / 2 ( U n i , U n i +1 ) − F i − 1 / 2 ( U n i − 1 , U n i ) i δx � 1 where F i ± 1 / 2 ≈ F ( U ( t, x i +1 / 2 )) dx is a Finite volume solver, δt n m i   Au � � with �   Au 2 + κ − 1 F ( U ) = I 1 − ′′ ′′ I 2 κ M. Ersoy (IMATH) 3D-1D 2020, 20 October 17 / 21

  70. Numerical scheme : hyperbolic part We consider a classical Finite Volume scheme, U = ( A, Q ) i − δt n � � U n +1 = U n F i +1 / 2 ( U n i , U n i +1 ) − F i − 1 / 2 ( U n i − 1 , U n i ) i δx � 1 where F i ± 1 / 2 ≈ F ( U ( t, x i +1 / 2 )) dx is a Finite volume solver, for δt n m i instance, with upwind technique to deal with source term − s n F i ± 1 / 2 = F ( U ) + F ( V ) i 2 ( V − U ) 2   Au � � with �   Au 2 + κ − 1 F ( U ) = I 1 − ′′ ′′ I 2 κ ◮ Bourdarias, Ersoy, Gerbi. Journal of Scientific Computing, 2011 M. Ersoy (IMATH) 3D-1D 2020, 20 October 17 / 21

  71. Numerical scheme : dispersive part We consider a classical Finite Volume scheme, U = ( A, Q ) i − δt n � � U n +1 = U n F i +1 / 2 ( U n i , U n i +1 ) − F i − 1 / 2 ( U n i − 1 , U n i ) i δx − δt n δx ([( I d − µ 2 L ) n ] − 1 D n ) i with ( D n ) i = D i +1 / 2 ( U n i − 1 , U n i , U n i +1 ) − D i − 1 / 2 ( U n i − 2 , U n i − 1 , U n i ) where D i ± 1 / 2 and [( I d − µ 2 L ) n ] − 1 are the centred approximation of � ∂ � D = 1 + µ 2 A Q and [( I d − µ 2 L )] − 1 ∂xI 1 − I 2 κ M. Ersoy (IMATH) 3D-1D 2020, 20 October 17 / 21

  72. Numerical scheme : We consider a classical Finite Volume scheme, U = ( A, Q ) i − δt n � � U n +1 = U n F i +1 / 2 ( U n i , U n i +1 ) − F i − 1 / 2 ( U n i − 1 , U n i ) i δx − δt n δx ([( I d − µ 2 L ) n ] − 1 D n ) i Theorem The numerical scheme is stable under the classical CFL condition, λ ∈ Sp( D U F ( U )) | λ | δt n max δx � 1 . ◮ Debyaoui, Ersoy. NumHyp, 2020 M. Ersoy (IMATH) 3D-1D 2020, 20 October 17 / 21

  73. Outline Outline 1 Derivation (based on Euler equations) 3D-2D 2D-1D 3D-1D 2 Improved model and stability Reformulated and stable models Invertible operator 3 Numerical analysis and test case Finite Volume scheme Numerical simulation 4 Conclusion and perspectives M. Ersoy (IMATH) 3D-1D 2020, 20 October 17 / 21

  74. Propagation of a solitary wave ( κ = 1 ) Accuracy ( σ = d = 1 ) 2.2 2.19 2.18 2.17 M n 2.16 N = 200 2.15 N = 400 N = 800 2.14 N = 1600 N = 3200 2.13 0 2 4 6 8 10 12 14 16 18 20 t (s) Figure – M n := 0 ≤ i ≤ N +2 ( h n max i ) and M soliton ( t ) := 2 . 2 M. Ersoy (IMATH) 3D-1D 2020, 20 October 18 / 21

  75. Propagation of a solitary wave ( κ = 1 ) Influence of the Section Variation ( N = 5000 cells) : σ ( x ; ε ) = β ( x ; ε ) − α ( x ; ε ) with � − ε 2 � x − L/ 2) 2 �� β = 1 2 − ε 2 exp and α = − β 2.215 2.21 2.205 2.2 M n 2.195 2.19 ε = 0 2.185 ε = 0.1 ε = 0.2 2.18 ε = 0.3 ε = 0.4 2.175 0 1 2 3 4 5 6 7 8 t (s) Figure – M n := x ∈ [0 ,L c ] ( h n max i ) M. Ersoy (IMATH) 3D-1D 2020, 20 October 18 / 21

  76. Propagation of a solitary wave ( κ = 1 ) Influence of the Section Variation ( N = 5000 cells) : σ ( x ; ε ) = β ( x ; ε ) − α ( x ; ε ) with � − ε 2 � x − L/ 2) 2 �� β = 1 2 − ε 2 exp and α = − β 1.2 1.15 1.1 1.05 m n /m 0 1 0.95 ε = 0 0.9 ε = 0.1 ε = 0.2 0.85 ε = 0.3 ε = 0.4 0.8 0 1 2 3 4 5 6 7 8 t (s) N +1 Figure – Influence of σ : m n 1 m 0 with m n = � A n i N + 2 i =0 M. Ersoy (IMATH) 3D-1D 2020, 20 October 18 / 21

  77. Propagation of a solitary wave ( κ = 1 ) Numerical order for ε = 0 N � η num − η exact � 2 � η num − η exact � ∞ 100 0.0789 0.0449 200 0.0497 0.0288 400 0.0304 0.0180 800 0.0198 0.0116 1600 0.0153 0.0081 3200 0.0138 0.0062 Order 0.53 0.58 M. Ersoy (IMATH) 3D-1D 2020, 20 October 18 / 21

  78. Propagation of a solitary wave ( κ = 1 ) Numerical order for ε = 0 . 4 (reference solution obtained with N = 10000 cells) N � η num − η ref � 2 � η num − η ref � ∞ 100 0.05212 0.02533 200 0.02096 0.01082 400 0.01079 0.00554 800 0.00748 0.00503 1600 0.00635 0.00412 3200 0.00505 0.00300 Order 0.64 0.56 M. Ersoy (IMATH) 3D-1D 2020, 20 October 18 / 21

  79. two solitary waves test case Comparison with the NLSW and the exact solution Figure – σ = 1 , d = 1 , N = 1000 , CFL = 0 . 95 , T f = 10 and κ = 1 . 159 M. Ersoy (IMATH) 3D-1D 2020, 20 October 19 / 21

  80. two solitary waves test case Comparison with the NLSW and the exact solution Influence of κ 1.3 Exact solution κ =1 κ =1.159 κ =2 1.25 κ =7 NLWS 1.2 1.15 h 1.1 1.05 1 0 10 20 30 40 50 x (b) Solutions at time T f = 10 M. Ersoy (IMATH) 3D-1D 2020, 20 October 19 / 21

  81. two solitary waves test case Comparison with the NLSW and the exact solution Influence of κ 0.016 L 1 Error 0.014 0.012 Error 0.01 0.008 0.006 0.004 1 2 3 4 5 6 7 κ (d) � h ex − h κ � 1 M. Ersoy (IMATH) 3D-1D 2020, 20 October 19 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend