symmetry energy constrained by nuclear collec ve excita
play

Symmetry energy constrained by Nuclear collec:ve excita:ons ( - PowerPoint PPT Presentation

Symmetry energy constrained by Nuclear collec:ve excita:ons ( February 16-18, 2017, Iizaka Hot Spa, Japan) H. Sagawa University of Aizu/RIKEN, Japan 1. Introduc:on 2. ISGMR and Incompressibility 3. Symmetry energy and Collec:ve excita:ons


  1. 『 Symmetry energy constrained by Nuclear collec:ve excita:ons 』 ( February 16-18, 2017, Iizaka Hot Spa, Japan) H. Sagawa University of Aizu/RIKEN, Japan 1. Introduc:on 2. ISGMR and Incompressibility 3. Symmetry energy and Collec:ve excita:ons and FRDM mass formula 4. Summary Castle of Crane (鶴ヶ城) in Aizu Wakamatsu

  2. Nuclear maXer Theory: roadmap 126 Ξ 82 S=-2 Supernovae protons A 50 ⇒ ∞ Λ Σ 82 S=-1 28 20 50 8 28 n , p neutrons 2 20 S=0 8 Neutron Star 2 Neutron Strangeness maXer

  3. Well-known basics on EDF’s ˆ ˆ [ ] ˆ E H E H ρ = Ψ Ψ = = Φ Φ eff ˆ ρ 1-body density matrix Φ Slater determinant ⇔ Calcula:ng the parameters from a Se_ng the structure by means m o r e f u n d a m e n t a l t h e o r y of symmetries (spin, isospin --) ( Rela:vis:c Bruckner HF or Chiral and fi_ng the parameters field theory and LQCD) Allows calcula:ng nuclear maXer and finite nuclei (even complex states), by disentangling physical parameters. HF/HFB for g.s., RPA/QRPA for excited states. Possible both in non-rela:vis:c and in rela:vis:c covariant form.

  4. Energy Density Func=onals E sym = ρ S ( ρ ) = E ( ρ , δ = 1) − E ( ρ , δ = 0)

  5. Correla:ons are obtained using EDFs ˆ ˆ [ ] ˆ E H E H ρ = Ψ Ψ = = Φ Φ eff ˆ ρ 1-body density matrix Φ Slater determinant ⇔ • H eff = T + V eff . If V eff is well designed, the resulting g.s. (minimum) energy can fit experiment at best. • Within a time-dependent theory, one can describe oscillations around v ≡ δ 2 E the minimum. The restoring force is: δρ 2 • The linearization of the equation of the motion leads to the well known Random Phase Approximation. ✓ ◆ ✓ ◆ ✓ ◆ A B X X = ~ ω − B ∗ − A ∗ Y Y 5

  6. Skyrme vs. rela:vis:c func:onals Skyrme effective force attraction short-range repulsion RMF In the relativistic (that is, covariant) models the nucleons are described as Dirac particles that exchange effective mesons. There are also point coupling versions ! 6

  7. EDF’s for hypernuclei and hypernuclearmaAer E = Ψ (N,Y) ˆ H(NN)+ ˆ H(NY) Ψ (N,Y) = Φ (N,Y) ˆ H eff (NN)+ ˆ H eff (NY) Φ (N,Y) = E ˆ ρ ( N ), ˆ [ ] ρ ( Y ) Slater determ inant ⇔ Φ (N,Y) 1-body density matrix ρ ( N ), ˆ ˆ ρ ( Y ) Se_ng the structure by means Calcula:ng the parameters from of symmetries (spin, isospin --) a m o r e f u n d a m e n t a l and fi_ng the parameters theory(quark models, Quark- Meson coupling model, LQCD) ! # E ρ N , ρ Y " $ Allows calcula:ng nuclear maXer and finite nuclei, neutron stars, by disentangling physical parameters. HF/HFB for g.s., RPA/QRPA for excited states. Possible both in non-rela:vis:c and in rela:vis:c covariant form.

  8. Nuclear MaXer SHF RMF Incompressibility K

  9. イメージを表示できません。メモリ不足のためにイメージを開くことができないか、イメージが破損している可能性があります。コンピューターを再起動して再度ファイルを開いてください。それでも赤い x が表示される場合は、イメージを削除して挿入してください。 Nuclear MaXer EOS Supernova Explosion イメージを表示できません。メモリ不足のためにイメージを開くことができないか、イメージが破損している可能性があります。コンピューターを再起動して再度ファイルを開いてください。それでも赤い x が表示される場合は、イメージを削除して挿入してください。 Isoscalar Giant Monopole Resonances { Isoscalar Compressional Dipole Resonances Incompressibility K Self consistent HF+RPA calcula:ons , ( , ) experimtent α α Self consistent RMF+RPA calcula:ons

  10. The nuclear incompressibility from ISGMR We can give credit to the idea that the link should be provided microscopically through the Energy Functional E[ ρ ]. K ∞ in nuclear matter (analytic) IT PROVIDES AT THE SAME TIME E ISGMR (by means of self- E ISGMR consistent RPA calculations) Skyrme Gogny E exp RPA RMF K ∞ [ MeV] 220 240 260 Extracted value of K ∞

  11. K The incompressibility of nuclear matter ∞ The incompressibility of nuclear matter can not be measured directly, it can be deduced from the response of ISGMR in heavy nuclei, such as 208 Pb. 0.4 E xp. S K I3(258) F raction E 0 E WS R /MeV S L y5(230) 0.3 S K P (201) 208 P b 0.2 0.1 K=217MeV for SkM* K=256MeV for SGI 0.0 K=355MeV for SIII 5 10 15 20 25 E (MeV )

  12. Based on the HFB+QRPA calcula:on, the ISGMR energies in Sn Isotopes are obtained using different Skyrme interac:on, but There is No sa:sfied conclusion according to those calcula:on Because the calcula:ons are not fully self-consistent, such as The two-body spin-orbit interac:on is dropped . J. Li et.al.,PRC78,064304(2008) Or the HF+BCS+QRPA(QTBA). The spin-orbit interac:on is dropped. V. Tselyaev, PRC 79, 034309 (2009) T. Sil, et.al., Phys. Rev. C73, 034316 (2006). The spin-orbit residual interac:on in HF+RPA produces an aXrac:ve effect on the ISGMR strength, the energies are pushed down by about 0.6MeV. No pairing. The strength func:on of QRPA is obtained by fully self-consistent HF+BCS+QRPA model with Residual interaction :full Skyrme force, two-body spin-orbit, two-body C oulomb , and also the pairing in particle-particle channel

  13. Nuclear MaAer EOS Isoscalar Monopole Giant Resonances in 208 Pb { Isoscalar Compressional Dipole Resonances K=(240 +/-10 +/- 10)MeV K ≈ (240 ± 10) MeV for Skyrme Incompressibility K ( G. Colo ,2004 ) ≈ (230 ± 10) MeV for Gogny ≈ (250 ± 10) MeV for RMF (Lalazissis,2005 ) ≈ (230 ± 10) MeV for Point Coupling ( P. Ring,2007)

  14. Extrac=ng K τ from data Using this formula globally is dangerous and risky (cf. M. Pearson, S. Shlomo and D. Youngblood) but one can use it locally. K Coul can be calculated and ETF calculations give K surf ≈ –K ∞ . What can we learn about neutron EOS from Giant resonances? Isospin dependence of GMR Dipole polarizability in 208 Pb (Tamii)

  15. Results for Sn isotopes Exp at RCNP SLy 5 230 MeV * SKM 217 MeV SKP 202 MeV

  16. Correlation between Isospin GMR and nuclear matter properties 1. Nuclear incompressibility K is determined empirically with the ISGMR in 208 Pb to be K~230MeV(Skyrme,Gogny), K~250MeV(RMF). K=(240 +/-10 +/- 10)MeV K=(225 +/-10)MeV 2. Combining ISGMR data of Sn and Cd isotopes(RCNP) K (500 50)MeV τ = − ± 3. is extracted from isotope dependence of ISGMR.

  17. 132 Sn

  18. J=(36+/-2)MeV L=(100+/-20)MeV Ksym= -(0+/-40)MeV To be con:nued

  19. 『 FRDM Mass Model and Symmetry Energy 』 ADNDT109-110, p.1-204(May-June, 2016)

  20. FRDM is a nuclear structure model with macro- and microscopic ingredients. To predict not only masses, but also deforma:ons, radii, beta-decay rates, alpha-decay rates and spin-pari:es of odd nuclei with quite reasonable agreements. Macroscopic part: LD model Microscopic part: Holded Yukawa poten:al Symmetry Energy ∂ 2 ( ε / ρ ) S ( ρ ) = 1 where δ =( ρ n − ρ p ) / ρ ∂ δ 2 2 2 " % " % ' + 1 S ( ρ ) = J + L ρ − ρ 0 ρ − ρ 0 2 K sym $ $ ' 3 ρ 0 3 ρ 0 # & # & ∂ 2 S ∂ S , K sym = 9 ρ 2 where J = S ( ρ 0 ), L =3 ρ 0 0 ∂ ρ 2 ∂ ρ ρ 0 ρ 0

  21. J=32.5+/-0.5MeV L=70+/-15MeV (54+/-15MeV) J=32.5+/-0.5MeV L=54+/-15MeV

  22. Summary of Symmetry Energy Studies 1. Micro-macroscopic model (FRDM) is further improved taking into account the op:miza:on of symmetry energy coefficients J and L: J=32.5 +/-0.5 MeV L=55 +/-15 MeV 2. Isospin dependence of GMR gives somewhat larger J and L which should be confirmed further by new experiments in RIKEN/CNS. 3. A controversial value 75<L<122MeV is extracted from AGDR in 208 Pb. 4. K sym can be determined by isotope dependence of ISGMR energies?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend