symmetries of stochastic colored vertex models
play

Symmetries of stochastic colored vertex models Pavel Galashin (UCLA) - PowerPoint PPT Presentation

Symmetries of stochastic colored vertex models Pavel Galashin (UCLA) Dimers in Combinatorics and Cluster Algebras 2020 arXiv:2003.06330 Q 11 Q 10 Q 9 Q 8 Q 11 Q 10 Q 9 Q 8 Q 11 Q 10 Q 9 Q 8 Q 11 Q 10 Q 9 Q 8 y 7 y 1 P 11 Q 7 P 11 Q 7 P 11 Q 7 P


  1. Symmetries of stochastic colored vertex models Pavel Galashin (UCLA) Dimers in Combinatorics and Cluster Algebras 2020 arXiv:2003.06330 Q 11 Q 10 Q 9 Q 8 Q 11 Q 10 Q 9 Q 8 Q 11 Q 10 Q 9 Q 8 Q 11 Q 10 Q 9 Q 8 y 7 y 1 P 11 Q 7 P 11 Q 7 P 11 Q 7 P 11 Q 7 y 6 y 2 P 10 Q 6 P 10 Q 6 P 10 Q 6 P 10 Q 6 y 5 y 3 P 9 Q 5 P 9 Q 5 P 9 Q 5 P 9 Q 5 y 4 y 4 P 8 Q 4 P 8 Q 4 P 8 Q 4 P 8 Q 4 y 3 y 5 P 7 Q 3 P 7 Q 3 P 7 Q 3 P 7 Q 3 y 2 y 6 P 6 Q 2 P 6 Q 2 P 6 Q 2 P 6 Q 2 y 1 y 7 P 5 Q 1 P 5 Q 1 P 5 Q 1 P 5 Q 1 P 4 P 3 P 2 P 1 P 4 P 3 P 2 P 1 P 4 P 3 P 2 P 1 P 4 P 3 P 2 P 1 x 1 x 2 x 3 x 4 x 1 x 2 x 3 x 4 H π ′ = 180 ◦ ( H ) H π = H Z H , V ( x , y ) = Z 180 ◦ ( H ) , V ( x , rev( y )) V π ′ = V V π = V

  2. Stochastic colored six-vertex model • Introduced in 2016: [KMMO16] A. Kuniba, V. V. Mangazeev, S. Maruyama, and M. Okado. Stochastic R matrix for U q ( A (1) n ). Nuclear Phys. B , 913:248–277, 2016.

  3. Stochastic colored six-vertex model • Introduced in 2016: [KMMO16] A. Kuniba, V. V. Mangazeev, S. Maruyama, and M. Okado. Stochastic R matrix for U q ( A (1) n ). Nuclear Phys. B , 913:248–277, 2016. • Limiting cases include many other interesting probabilistic models

  4. Stochastic colored six-vertex model • Introduced in 2016: [KMMO16] A. Kuniba, V. V. Mangazeev, S. Maruyama, and M. Okado. Stochastic R matrix for U q ( A (1) n ). Nuclear Phys. B , 913:248–277, 2016. • Limiting cases include many other interesting probabilistic models

  5. Stochastic colored six-vertex model • Introduced in 2016: [KMMO16] A. Kuniba, V. V. Mangazeev, S. Maruyama, and M. Okado. Stochastic R matrix for U q ( A (1) n ). Nuclear Phys. B , 913:248–277, 2016. • Limiting cases include many other interesting probabilistic models

  6. n lattice paths of colors 1 , 2 , . . . , n move up/right on Z 2 n = 11 10 9 8 7 6 5 4 3 2 1

  7. n lattice paths of colors 1 , 2 , . . . , n move up/right on Z 2 When two paths of colors c 1 < c 2 enter a n = 11 square from the bottom/left, they form either a crossing or an elbow 10 → c 2 c 2 or c 2 p 9 c 1 c 1 c 1 Probability: 1 − p 8 p 7 c 1 → c 1 or c 1 p 6 c 2 c 2 c 2 Probability: q p 1 − q p 5 4 3 2 1

  8. n lattice paths of colors 1 , 2 , . . . , n move up/right on Z 2 When two paths of colors c 1 < c 2 enter a n = 11 square from the bottom/left, they form either a crossing or an elbow 10 → c 2 c 2 or c 2 p 9 c 1 c 1 c 1 Probability: 1 − p 8 p 7 c 1 → c 1 or c 1 p 6 c 2 c 2 c 2 Probability: q p 1 − q p 5 4 3 2 1

  9. n lattice paths of colors 1 , 2 , . . . , n move up/right on Z 2 When two paths of colors c 1 < c 2 enter a n = 11 square from the bottom/left, they form either a crossing or an elbow 10 → c 2 c 2 or c 2 p 9 c 1 c 1 c 1 Probability: 1 − p 8 p 7 c 1 → c 1 or c 1 p 6 c 2 c 2 c 2 Probability: q p 1 − q p 5 4 3 2 1

  10. n lattice paths of colors 1 , 2 , . . . , n move up/right on Z 2 When two paths of colors c 1 < c 2 enter a n = 11 square from the bottom/left, they form either a crossing or an elbow 10 → c 2 c 2 or c 2 p 9 c 1 c 1 c 1 Probability: 1 − p 8 p 7 c 1 → c 1 or c 1 p 6 c 2 c 2 c 2 Probability: q p 1 − q p 5 4 3 2 1

  11. n lattice paths of colors 1 , 2 , . . . , n move up/right on Z 2 When two paths of colors c 1 < c 2 enter a n = 11 square from the bottom/left, they form either a crossing or an elbow 10 → c 2 c 2 or c 2 p 9 c 1 c 1 c 1 Probability: 1 − p 8 p 7 c 1 → c 1 or c 1 p 6 c 2 c 2 c 2 Probability: q p 1 − q p 5 4 3 2 1

  12. n lattice paths of colors 1 , 2 , . . . , n move up/right on Z 2 When two paths of colors c 1 < c 2 enter a n = 11 square from the bottom/left, they form either a crossing or an elbow 10 → c 2 c 2 or c 2 p 9 c 1 c 1 c 1 Probability: 1 − p 8 p 7 c 1 → c 1 or c 1 p 6 c 2 c 2 c 2 Probability: q p 1 − q p 5 4 3 2 1

  13. n lattice paths of colors 1 , 2 , . . . , n move up/right on Z 2 When two paths of colors c 1 < c 2 enter a n = 11 square from the bottom/left, they form either a crossing or an elbow 10 → c 2 c 2 or c 2 p 9 c 1 c 1 c 1 Probability: 1 − p 8 p 7 c 1 → c 1 or c 1 p 6 c 2 c 2 c 2 Probability: q p 1 − q p 5 0 < q < 1 is fixed 4 3 2 1

  14. n lattice paths of colors 1 , 2 , . . . , n move up/right on Z 2 When two paths of colors c 1 < c 2 enter a n = 11 square from the bottom/left, they form either a crossing or an elbow 10 → c 2 c 2 or c 2 p 9 c 1 c 1 c 1 Probability: 1 − p 8 p 7 c 1 → c 1 or c 1 p 6 c 2 c 2 c 2 Probability: q p 1 − q p 5 0 < q < 1 is fixed spectral parameter p depends on the square 4 3 2 1

  15. n lattice paths of colors 1 , 2 , . . . , n move up/right on Z 2 Q 11 Q 10 Q 9 Q 8 When two paths of colors c 1 < c 2 enter a y 7 P 11 Q 7 square from the bottom/left, they form y 6 either a crossing or an elbow P 10 Q 6 → c 2 c 2 or c 2 p y 5 P 9 Q 5 c 1 c 1 c 1 y 4 Probability: 1 − p P 8 Q 4 p y 3 P 7 Q 3 c 1 → c 1 or c 1 p y 2 P 6 Q 2 c 2 c 2 c 2 Probability: q p 1 − q p y 1 P 5 Q 1 0 < q < 1 is fixed P 4 P 3 P 2 P 1 spectral parameter p depends on the square p i , j = y j − x i x 1 x 2 x 3 x 4 y j − qx i

  16. → or Q 11 Q 10 Q 9 Q 8 c 2 c 2 c 2 p y 7 P 11 Q 7 c 1 c 1 c 1 y 6 P 10 Q 6 Probability: 1 − p p y 5 P 9 Q 5 y 4 P 8 Q 4 c 1 → c 1 or c 1 p y 3 P 7 Q 3 y 2 c 2 c 2 c 2 P 6 Q 2 Probability: q p 1 − q p y 1 P 5 Q 1 y j − x i p i , j = P 4 P 3 P 2 P 1 y j − qx i x 1 x 2 x 3 x 4

  17. → or Q 11 Q 10 Q 9 Q 8 c 2 c 2 c 2 p y 7 P 11 Q 7 c 1 c 1 c 1 y 6 P 10 Q 6 Probability: 1 − p p y 5 P 9 Q 5 y 4 P 8 Q 4 c 1 → c 1 or c 1 p y 3 P 7 Q 3 y 2 c 2 c 2 c 2 P 6 Q 2 Probability: q p 1 − q p y 1 P 5 Q 1 y j − x i p i , j = P 4 P 3 P 2 P 1 y j − qx i 2 MN pipe dreams − x 1 x 2 x 3 x 4 → n ! permutations  1 2 3 4 5 6 7 8 9 10 11  π = ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓   2 1 3 10 8 6 4 11 5 7 9

  18. → or Q 11 Q 10 Q 9 Q 8 c 2 c 2 c 2 p y 7 P 11 Q 7 c 1 c 1 c 1 y 6 P 10 Q 6 Probability: 1 − p p y 5 P 9 Q 5 y 4 P 8 Q 4 c 1 → c 1 or c 1 p y 3 P 7 Q 3 y 2 c 2 c 2 c 2 P 6 Q 2 Probability: q p 1 − q p y 1 P 5 Q 1 y j − x i p i , j = P 4 P 3 P 2 P 1 y j − qx i 2 MN pipe dreams − x 1 x 2 x 3 x 4 → n ! permutations For each π ∈ S n , let H π and V π record  1 2 3 4 5 6 7 8 9 10 11  the endpoints of all “horizontal” and π = ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ “vertical” pipes   2 1 3 10 8 6 4 11 5 7 9

  19. → or Q 11 Q 10 Q 9 Q 8 c 2 c 2 c 2 p y 7 P 11 Q 7 Q 7 c 1 c 1 c 1 y 6 P 10 P 10 Q 6 Q 6 Probability: 1 − p p y 5 P 9 P 9 Q 5 Q 5 y 4 P 8 Q 4 Q 4 c 1 → c 1 or c 1 p y 3 P 7 P 7 Q 3 y 2 c 2 c 2 c 2 P 6 P 6 Q 2 Probability: q p 1 − q p y 1 P 5 Q 1 y j − x i p i , j = P 4 P 3 P 2 P 1 y j − qx i 2 MN pipe dreams − x 1 x 2 x 3 x 4 → n ! permutations For each π ∈ S n , let H π and V π record  1 2 3 4 5 6 7 8 9 10 11  the endpoints of all “horizontal” and π = ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ “vertical” pipes   2 1 3 10 8 6 4 11 5 7 9 H π = { (6 , 6) , (7 , 4) , (9 , 5) , (10 , 7) }

  20. → or Q 11 Q 10 Q 10 Q 9 Q 8 c 2 c 2 c 2 p y 7 P 11 Q 7 c 1 c 1 c 1 y 6 P 10 Q 6 Probability: 1 − p p y 5 P 9 Q 5 y 4 P 8 Q 4 c 1 → c 1 or c 1 p y 3 P 7 Q 3 y 2 c 2 c 2 c 2 P 6 Q 2 Probability: q p 1 − q p y 1 P 5 Q 1 y j − x i p i , j = P 4 P 4 P 3 P 2 P 1 y j − qx i 2 MN pipe dreams − x 1 x 2 x 3 x 4 → n ! permutations For each π ∈ S n , let H π and V π record  1 2 3 4 5 6 7 8 9 10 11  the endpoints of all “horizontal” and π = ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ “vertical” pipes   2 1 3 10 8 6 4 11 5 7 9 H π = { (6 , 6) , (7 , 4) , (9 , 5) , (10 , 7) } V π = { (4 , 10) }

  21. → or Q 11 Q 10 Q 9 Q 8 c 2 c 2 c 2 p y 7 P 11 Q 7 c 1 c 1 c 1 y 6 P 10 Q 6 Probability: 1 − p p y 5 P 9 Q 5 y 4 P 8 Q 4 c 1 → c 1 or c 1 p y 3 P 7 Q 3 y 2 c 2 c 2 c 2 P 6 Q 2 Probability: q p 1 − q p y 1 P 5 Q 1 y j − x i p i , j = P 4 P 3 P 2 P 1 y j − qx i 2 MN pipe dreams − x 1 x 2 x 3 x 4 → n ! permutations For each π ∈ S n , let H π and V π record  1 2 3 4 5 6 7 8 9 10 11  the endpoints of all “horizontal” and π = ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ “vertical” pipes   2 1 3 10 8 6 4 11 5 7 9 Given H , V , let Z H , V ( x , y ) =probability of observing H π = { (6 , 6) , (7 , 4) , (9 , 5) , (10 , 7) } π ∈ S n with H π = H and V π = V . V π = { (4 , 10) }

  22. Flip theorem (G., 2020) Q 11 Q 10 Q 9 Q 8 Q 11 Q 10 Q 9 Q 8 Q 11 Q 10 Q 9 Q 8 Q 11 Q 10 Q 9 Q 8 y 7 y 1 P 11 Q 7 P 11 Q 7 P 11 Q 7 P 11 Q 7 y 6 y 2 P 10 Q 6 P 10 Q 6 P 10 Q 6 P 10 Q 6 y 5 y 3 P 9 Q 5 P 9 Q 5 P 9 Q 5 P 9 Q 5 y 4 y 4 P 8 Q 4 P 8 Q 4 P 8 Q 4 P 8 Q 4 y 3 y 5 P 7 Q 3 P 7 Q 3 P 7 Q 3 P 7 Q 3 y 2 y 6 P 6 Q 2 P 6 Q 2 P 6 Q 2 P 6 Q 2 y 1 y 7 P 5 Q 1 P 5 Q 1 P 5 Q 1 P 5 Q 1 P 4 P 3 P 2 P 1 P 4 P 3 P 2 P 1 P 4 P 3 P 2 P 1 P 4 P 3 P 2 P 1 x 1 x 2 x 3 x 4 x 1 x 2 x 3 x 4 H π ′ = 180 ◦ ( H ) H π = H Z H , V ( x , y ) = Z 180 ◦ ( H ) , V ( x , rev( y )) V π ′ = V V π = V

  23. → c 2 c 2 or c 2 p c 1 c 1 c 1 Probability: 1 − p p c 1 → c 1 or c 1 p c 2 c 2 c 2 Probability: q p 1 − q p y j − x i p i , j = y j − qx i Flip theorem: Z H , V ( x , y ) = Z 180 ◦ ( H ) , V ( x , rev( y ))

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend