swing amplification
play

Swing Amplification James Binney University of Oxford Saas Fee, - PowerPoint PPT Presentation

Swing Amplification James Binney University of Oxford Saas Fee, January 2019 Goldreich & Lynden Bell (1965) Julian & Toomre (1966) Shearing sheet Consider large m and study small near-Cartesian patch that rotates with


  1. Swing Amplification James Binney University of Oxford Saas Fee, January 2019

  2. ◮ Goldreich & Lynden Bell (1965) ◮ Julian & Toomre (1966)

  3. Shearing sheet ◮ Consider large m and study small near-Cartesian patch that rotates with particle on circular orbit at its centre ◮ x 2 + ( R + x ) 2 ( ˙ L = 1 y/R + Ω) 2 ] − Φ( R + x ) 2 [ ˙ p x = ˙ x � ˙ � 1 y p y = ( R + x ) 2 R + Ω R ≃ R Ω + 2Ω x + ˙ y

  4. Shearing sheet ◮ � � p 2 y H = 1 p 2 x + − Ω Rp y + Φ 2 (1 + x/R ) 2 ◮ Consts of motion: H and p y or ∆ y ≡ p y − R Ω = 2Ω x + ˙ y ◮ Relations between frequencies ∂ Ω A = − 1 B = A − Ω 2 ∂ ln R κ 2 = 4Ω(Ω − A ) = − 4Ω B

  5. Shearing sheet ∂ Φ ∂x = R Ω 2 � ∂ Φ � Ω 2 + 2 R Ω ∂ Ω � = R Ω 2 + x + O( x 2 ) � � ∂x ∂R � R + x � 2 R∂ Ω � = R Ω 2 + x Ω (Ω − 4 A ) A ≡ − 1 ∂R

  6. Shearing sheet ∂ Φ ∂x = R Ω 2 � ∂ Φ � Ω 2 + 2 R Ω ∂ Ω � = R Ω 2 + x + O( x 2 ) � � ∂x ∂R � R + x � 2 R∂ Ω � = R Ω 2 + x Ω (Ω − 4 A ) A ≡ − 1 ∂R ◮ Hence Φ( R + x ) ≃ Φ( R ) + R Ω 2 x + 1 2 Ω(Ω − 4 A ) x 2 R + 3 x 2 � � 1 − 2 x �� H = 1 p 2 x + p 2 − R Ω p y + Φ( R ) y 2 R 2 + R Ω 2 x + 1 2 Ω(Ω − A ) x 2 ≃ 1 p 2 x + ∆ 2 y − R 2 Ω 2 � + Φ( R ) − x Ω∆ y + 1 2 κ 2 x 2 � 2 where ∆ y ≡ p y − R Ω and κ 2 ≡ 4Ω(Ω − A )

  7. Shearing sheet ∂ Φ ∂x = R Ω 2 � ∂ Φ � Ω 2 + 2 R Ω ∂ Ω � = R Ω 2 + x + O( x 2 ) � � ∂x ∂R � R + x � 2 R∂ Ω � = R Ω 2 + x Ω (Ω − 4 A ) A ≡ − 1 ∂R ◮ Hence Φ( R + x ) ≃ Φ( R ) + R Ω 2 x + 1 2 Ω(Ω − 4 A ) x 2 R + 3 x 2 � � 1 − 2 x �� H = 1 p 2 x + p 2 − R Ω p y + Φ( R ) y 2 R 2 + R Ω 2 x + 1 2 Ω(Ω − A ) x 2 ≃ 1 p 2 x + ∆ 2 y − R 2 Ω 2 � + Φ( R ) − x Ω∆ y + 1 2 κ 2 x 2 � 2 where ∆ y ≡ p y − R Ω and κ 2 ≡ 4Ω(Ω − A ) ◮ x oscillates harmonically about x ≡ 2Ω∆ y /κ 2

  8. circular orbits ◮ Circular orbits are ones on which x = x , so � κ 2 � y = ∆ y − 2Ω x = ˙ 2Ω − 2Ω x = − 2 Ax (circular orbit) ◮ Defines shear in the sheet

  9. Shearing sheet ◮ Let v φ ≡ 2 Ax + ˙ y be the azimuthal speed relative to the local circular orbit, then since ∆ y = 2Ω x + ˙ y and x = 2Ω∆ y /κ 2 v φ = 2( A − Ω) x + κ 2 x 2Ω = 2( A − Ω)( x − x ) tells us how far a star is from its guiding centre ◮ When we eliminate x from H in favour of v φ we get ( x − x ) 2 − x 2 � p 2 x + ∆ 2 y − R 2 Ω 2 � 2 κ 2 � H ≃ 1 + Φ( R ) + 1 � 2 1 − 4Ω 2 κ 2 � � � � = 1 p 2 x + ∆ 2 − R 2 Ω 2 + Φ( R ) + 1 ( A − Ω) 2 v 2 y φ 2 8 κ 2 � A � Ω p 2 x + ∆ 2 A − Ω − R 2 Ω 2 Ω − Av 2 = 1 + Φ( R ) + 1 y φ 2 2 = H x ( p x , v φ ) + H y (∆ y ) ( B ≡ A − Ω)

  10. Swing amplification ◮ We posit P = 2 πG Σ / | k | is generated by a density pattern that shears along circular orbits ◮ On account of shear, k x is a function of time: k x (0) x + k y y (0) = k x ( t ) x + k y y ( t ) ⇒ k x ( t ) = k x (0) + 2 k y At ◮ Let t ′ ≡ t − t c be time since t c ≡ − k x 2 k y A when k x = 0 ◮ k x ( t ′ ) = 2 Ak y t ′ √ 1 + 4 A 2 t ′ 2 goes through a minimum as k x ◮ So | k | = k y passes through 0 ◮ P = 2 πG Σ 1 / | k | has a corresponding maximum

  11. Unperturbed (non-circular) orbits x = x + X cos θ r ⇒ p r = − κX sin θ r v φ = 2 B ( x − x ) = 2 BX cos θ r x = 2Ω y = ∆ y − 2Ω x = ∆ y − 2Ω( x + X cos θ r ) ˙ κ 2 ∆ y 1 − 4Ω 2 � � t ′ − 2Ω y ( t ′ ) = y (0) + ∆ y ⇒ κ X sin θ r κ 2 B t ′ − 2Ω A = y (0) + ∆ y κ X sin θ r Hence k x x + k y y = 2 k y At ′ ( x + X cos θ r ) � B t ′ − 2Ω A � + k y y (0) + ∆ y κ X sin θ r � � �� At ′ cos θ r − Ω = k y y (0) + 2 X κ sin θ r

  12. Linearizing the CBE ◮ With f = f 0 ( H 0 ) + f 1 and H = H 0 + Φ 1 ∂f d f 1 ∂t + [ f, H ] = 0 ⇒ d t = [Φ 1 , f 0 ] ◮ On integration we have � t d t ∂ Φ 1 ∂ x · ∂f 0 f 1 = ∂ p t 0 where the integral is along unperturbed orbits. ◮ We take f 0 = F e − H x /σ 2 ⇒ Σ 0 = 4 πFσ 2 B/κ ◮ This DF ◮ generates biaxial Maxwellian v distribution ◮ is a function of p x , and, through v φ , of both its conjugate variable x , and the momentum ∆ y

  13. Linearised CBE ◮ Using H x = 1 2 [ p 2 x + κ 2 ( x − x ) 2 ] with Φ 1 ( x, y ) = P e i k · x , we have ∂ p = − i FP e i k · x e − H x /σ 2 ∂ Φ 1 ∂ x · ∂f 0 [ k x p x − k y 2Ω( x − x )] σ 2 ◮ � t f 1 ( t ) = 2 πGF ie − H x /σ 2 d t ′ Σ 1 e i[ ψ ( t ′ )+ k y y (0)] σ 2 t 0 × − 2 At ′ κX sin θ r − 2Ω X cos θ r √ , 1 + 4 A 2 t ′ 2 where we have introduced a phase ψ ( t ′ ) ≡ 2 k y X ( At ′ cos θ r − (Ω /κ ) sin θ r ) . ◮ As we integrate over v to get Σ 1 , y (0) will vary.

  14. Dealing with y (0) B t + 2Ω A y (0) = y ( t ) − ∆ y κ X sin θ r = y ( t ) − κ 2 x B t + 2Ω A κ X sin θ r 2Ω B = y ( t ) + 2 At ( x − X cos θ r ) + 2Ω κ X sin θ r Note � k y [ y ( t ) + 2 Atx ( t )] = k · x t . � so k y y (0) = k · x − ψ ( t )

  15. Introducing cpts of v Using θ r = θ 0 + κt ′ we write sin θ 0 cos κt ′ + cos θ 0 sin κt ′ � � κX sin θ r = κX = − U x cos κt ′ + U y sin κt ′ κX cos θ r = U y cos κt ′ + U x sin κt ′ U x ≡ − κX sin θ 0 = p x U y ≡ κX cos θ 0 = ( κ/ 2 B ) v φ . Now ψ ( t ′ ) − ψ ( t ) = 2( k y /κ )[ U x { A ( t ′ S − tS ) + Ω κ ( C ′ − C ) } + U y { A ( t ′ C ′ − tC ) − Ω κ ( S ′ − S ) } ] where C ( t ) ≡ cos κt , S ( t ) ≡ sin κt

  16. Integrating over V ◮ � t � d p x d v φ f 1 = − G Σ 0 K Σ 1 ( t ′ ) e i k · x Σ 1 ( t ) = d t ′ √ σ 1 + 4 A 2 t ′ 2 t 0 where K ( t, t ′ ) ≡ i � d 2 U e − U 2 / 2 σ 2 e i[ ψ ( t ′ ) − ψ ( t )] σ 3 � 2 At ′ ( − U x C + U y S ) + 2(Ω /κ )( U y C + U x S ) � × ◮ Tickle the disc: � t d t ′ K ( t, t ′ )[ δ ( t ′ − t 0 ) + Σ 1 ( t ′ )] κ 3 . 36 Q e i k · x √ Σ 1 ( t ) = − 1 + 4 A 2 t ′ 2 t 0 κσ Q = 3 . 36 G Σ

  17. Evaluating K � � d u y e − a 2 u 2 y +2i b y u y d u x e − a 2 u 2 x +2i b x u x ( c x u x + c y u y ) √ π e − b 2 x /a 2 � d u y e − a 2 u 2 y +2i b y u y ( c y u y a + i c x b x /a ) = a 2 = i π a 4 e − ( b 2 x + b 2 y ) /a 2 ( c x b x + c y b y ) . 1 a 2 = 2 σ 2 b x = ( k y /κ )[ A ( t ′ S ′ − tS ) + (Ω /κ )( C ′ − C )] b y = ( k y /κ )[ A ( t ′ C ′ − tC ) − (Ω /κ )( S ′ − S )) c x = − At ′ C ′ + Ω κ S ′ c y = At ′ S ′ + Ω κ C ′ .

  18. solutions ◮ V c = const , Q = 1 ◮ V c = const , Q = 1 . 1

  19. Swing amplification

  20. Conclusion ◮ WKB theory is misleading in putting an exclusion zone around CR ◮ CR is where the key action takes place ◮ illustrated by modes in N-body models ◮ Key process: amplification of waves as leading → trailing

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend