pre amplification critically analysed
play

Pre-amplification critically analysed Jo Vandesompele professor, - PowerPoint PPT Presentation

Pre-amplification critically analysed Jo Vandesompele professor, Ghent University co-founder and CEO, Biogazelle Advanced Methods in RNA quantification (London, UK) May 21, 2009 outline introduction 450 miRNA pre-amplification


  1. Pre-amplification critically analysed Jo Vandesompele professor, Ghent University co-founder and CEO, Biogazelle Advanced Methods in RNA quantification (London, UK) May 21, 2009

  2. outline  introduction  450 miRNA pre-amplification  Mestdagh et al., Nucleic Acids Research, 2008  [Mestdagh et al., Genome Biology, in press]  whole mRNAome pre-amplification  prognostic gene signature in cancer patients  Vermeulen et al., The Lancet Oncology, accepted

  3. pre-amplification – the one and only quality criterion  preservation of differential expression (fold changes) before (B) and after (A) sample pre-amplification  [no introduction of bias] (G1S1) B /(G1S2) B = (G1S1) A /(G1S2) A G1 B /G2 B < > G1 A /G2 A gene G, sample S, before B, after A

  4. pre-amplification – the scene  pre: before actual qPCR  amplification: make large amounts of RNA/(c)DNA from limited input  single cell – picograms – nanograms >> micrograms  transcriptome wide  all long RNA molecules  advantages o no prior knowledge of target genes is needed o study can grow  disadvantages o somewhat more expensive  focused pre-amplification  predefined set of sequences  advantages o fast and simple  disadvantages o all targets need to be known in advance

  5. pre-amplification – the players  transcriptome wide  Eberwine method o T7-RNA polymerase based in vitro transcription > antisense RNA o home brew protocols  SMART method (Clontech) o template switch mechanism sense RNA o T7-RNA in vitro transcription  Phi29 based o rolling circle amplification – strand displacement o cDNA  SPIA technology (NuGEN) o hybrid RNA/DNA SPIA primer o cDNA  focused pre-amplification  limited cycle PCR (10-14 cycles)

  6. Ebermine method 3’ 5’ AAAAA 3’ TTTTT 5’ ste 1 streng cDNA-synthese (met T7-oligo(dT) primer) 5’ 3’ AAAAA 3’ 5’ TTTTT ste 1 ronde 3’ AAAAA 5’ de 2 streng cDNA-synthese TTTTT 5’ 3’ antisense RNA-amplificatie 3’ 5’ UUUUU (T7 RNA polymerase) 5’ NNNNNN 3’ 5’ 3’ NNNNNN ste 1 streng cDNA-synthese 5’ (met random hexameren) 3’ UUUUU de 2 ronde 3’ de 5’ AAAAA 2 streng cDNA-synthese (met T7-oligo(dT) primer) 5’ TTTTT antisense RNA-amplificatie 3’ UUUUU 5’ (T7 RNA polymerase)

  7. SMART

  8. SPIA

  9. microRNA pre-amplification  stem-loop megaplex reverse transcription using 20 ng total RNA  limited-cycle pre-amplification (14)  qPCR profiling 450 miRNAs and controls  higher sensitivity  minimal amplification bias (Mestdagh et al., Nucleic Acids Research)

  10. minimal pre-amplification bias ∆∆Cq (|∆Cq NP - ∆Cq P |) NBL-S, IMR-32 ∆∆Cq (|∆Cq NP - ∆Cq P |) NBL-S, IMR-32 8 2.5 8 7 7 2 6 6 5 5 1.5 4 4 1 3 3 2 2 0.5 1 1 0 0 0 10 15 20 25 30 35 10 15 20 25 30 10 15 20 25 30 35 Average Cq NP (NBL-S, IMR-32) Average Cq NP (NBL-S, IMR-32) 0 0 -0.2 -0.1 -0.4 Average ∆∆Cq Average ∆∆Cq -0.2 -0.6 -0.3 -0.8 -0.4 -1 -0.5 -1.2 -1.4 -0.6

  11. single cell profiling 30 30 30 30 A B 25 25 25 25 Cq-value Cq-value 20 20 20 20 15 15 15 15 miR-18a miR-92 10 10 10 10 R 2 = 0.975 R 2 = 0.998 5 5 5 5 0 0 0 0 1 2 4 8 16 32 64 128 0 2 4 6 8 10 12 14 0 2 4 6 8 0 2 4 6 8 10 12 14 total cell number total RNA input (pg) 35 35 35 35 30 30 30 30 25 25 25 25 Cq-value Cq-value 20 20 20 20 15 15 15 15 miR-20b miR-19a 10 10 10 10 R 2 = 0.993 R 2 = 0.996 5 5 5 5 0 0 0 0 1 2 4 8 16 32 64 128 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 total cell number total RNA input (pg)

  12. Mestdagh et al., Nucleic Acids Research, 2008

  13. outline  background research & goals  neuroblastoma  prognostic marker selection  study design and workflow  RNA quality control  sample pre-amplification  normalization  data-analysis and results

  14. biomarker signature based stratification

  15. biomarker signature based stratification

  16. aim  development and validation of a robust prognostic gene signature for neuroblastoma using real-time qPCR  identifying patients with  increased risk in the current low risk and high risk group  good molecular signature in the current high risk group  better choice of risk-related therapy

  17. neuroblastoma  most frequent extra-cranial solid tumor in children  originates from primitive (immature) sympathetic nervous system cells  1:100,000 children (< 15 years)  20 cases/year Belgium | 700 cases/year USA  15% of childhood cancer deaths  prognosis is dependent on  tumor stage (localized vs. metastatic disease)  age at diagnosis (< or > 1 year)  genetic defects: amplification MYCN, ploidy, loss of 1p, gain of 17q

  18. prognostic classification  misclassifications resulting in overtreatment or undertreatment  need for additional tumor-specific prognostic markers  current microarray gene expression studies  data overfitting  unstable gene lists  lack of overlap  biological & technical noise  much more genes than samples  probe annotation / platform  different risk definition  different data processing and analysis

  19. study workflow • meta-analysis of 7 published microarray gene selection of a top ranking expression studies list of 59 prognostic • literature screening of almost 800 abstracts from markers single-gene studies RNA quality control 423 • two PCR-based assays samples • capillary gel electrophoresis (Experion) sample pre-amplification (WT-Ovation) analysis of 366 primary untreated neuroblastoma tumours using real-time qPCR • Prediction Analysis of Microarrays data-analysis • Kaplan-Meier • Cox proportional hazards

  20. towards real-time PCR signature profiling  100 ng total RNA  30 ng quality control  10 ng unbiased amplification WT-Ovation (NuGEN)  PCR assay design and validation  sensitivity, specificity and efficiency RTPrimerDB (Pattyn et al., 2006, NAR; Lefever et al, 2009, NAR)  absolute standards  real-time PCR using 384-well format  sample maximization strategy (Hellemans et al., Genome Biology, 2007)  366 tumors and 1 gene/plate

  21. WT-Ovation reproducibility 35,00 mean of 5, 15 and 50 ng of total RNA amplified 30,00 25,00 mean Cq (n=3) Stratagene cell line A cell line B cell line C 20,00 15,00 10,00 ACTB RPL13A 18S YWHAZ B2M GAPDH UBC HPRT1 SDHA HMBS genes

  22. WT-Ovation – no amplification bias 100 90 80 cumulative distribution 70 60 50 40 30 20 10 0 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 bias (Cq) median bias = 0.36, 90%tile bias = 0.61

  23. WT-Ovation – no amplification bias 100 90  no need for DNase treatment  no need for cleanup of amplified products 80 cumulative distribution 70 60 50 40 30 20 10 0 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 bias (Cq) median bias = 0.36, 90%tile bias = 0.61

  24. preservation of differential expression

  25. qPCR reproducibility  within a 384-well plate: 4 x 96 replicates 10,000 # 1,000 # 100 # 10 # 40 35 30 25 20 15 10 5 0 0 50 100 150 200 250 300 350 400

  26. qPCR reproducibility  between two identical 384-well plates  maximum Δ Cq: 0.45 40 35 30 25 20 15 15 20 25 30 35 40

  27. absolute standards FP stuffer RCRP  synthetic control  55 nucleotides  PAGE purification  blocking group  5 points dilution series: 15 molecules > 150.000 molecules

  28. absolute standards  reproducibility across master mixes (5) and instruments (2) 35 30 25 MM1 20 MM2 MM3 MM4 15 MM5 10 5 0 1000000 100000 10000 1000 100 10

  29. absolute standards cross lab comparison 366 samples 5 standards (triplicates) 5 reference genes + 5 other genes

  30. absolute standards cross lab comparison  5 standards (triplicates) Cq qPCR instrument 1, mastermix 1 36 34 32 average Δ Cq standards 30 28 correction Cq samples 26 24 22 20 18 16 16 18 20 22 24 26 28 30 32 34 36 Cq qPCR instrument 2, mastermix 2

  31. absolute standards cross lab comparison  ARHGEF7 gene  366 samples  use of 5 standards (triplicates) for correction Cq qPCR instrument 1, mastermix 1 36 34 32 30 28 26 24 22 20 18 16 16 18 20 22 24 26 28 30 32 34 36 Cq qPCR instrument 2, mastermix 2

  32. rigorous control of RNA quality 423 primary untreated NB (100 ng total RNA) 5’ - 3’ assay (HPRT1): SPUD assay (Nolan et al, 2006): evaluation of mRNA integrity detection of inhibitors 30 ng Computed gel analysis (Experion, Biorad): evaluation of total RNA quality 366 RNA samples

  33. impact of RNA quality on expression stability  differences in reference gene ranking between intact and degraded RNA (Perez-Novo et al., Biotechniques, 2005)

  34. RNA quality parameters 80 50 80 40 60 60 frequency 30 40 40 20 20 20 10 0 0 0 0 5 10 15 20 5 10 15 20 25 2 4 6 8 10 RQI 5’ - 3’ dCq AluSq Cq

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend