sustainable nanostructured materials for energy storage m
play

Sustainable Nanostructured Materials for Energy Storage M t i l f - PowerPoint PPT Presentation

Sustainable Nanostructured Materials for Energy Storage M t i l f E St Jaephil Cho I t Interdisciplinary School of Green Energy and di i li S h l f G E d Converging Research Center for Innovative Battery Technologies UNIST Issues


  1. Sustainable Nanostructured Materials for Energy Storage M t i l f E St Jaephil Cho I t Interdisciplinary School of Green Energy and di i li S h l f G E d Converging Research Center for Innovative Battery Technologies UNIST

  2. Issues  Capacity (Energy density)  Capacity (Energy density) Capacity (Energy density) Capacity (Energy density)  Flexibility Flexibility  Fast Charging/Discharging Fast Charging/Discharging g g g g g g g g

  3. R & D Target 400 400 New material Future 350 /kg) breakthrough g Present sity (Wh/ ht Weight 300 250 rgy dens Ligh 200 ight ener 150 100 Li Rechargeable Battery Li Rechargeable Battery Wei Small size 50 Ni-MH Ni-Cd Pb Pb 0 0 0 100 200 300 400 500 600 700 800 900 1000 Volume energy density (Wh/l)

  4. Contents 1 Introduction Introduction 2 Cathodes 2 Cathodes 3 Anodes 3 Anodes 3 Anodes 3 Anodes 4 4 Summaries Summaries Summaries Summaries

  5. Introduction Introduction Cathodes

  6. Application area 2. EV or HEV 1. Mobile Device ♣ High Safety ♣ High Capacity ♣ g p y ♣ Wide temperature range ♣ Wide temperature range - Global Communication System ♣ High Power - 3G/4G ♣ Low Cost ♣ Good cycle life y Car - Cellular Phone - Notebook 3. Power Tool ♣ High Safety ♣ High Power Small ♣ Low Cost ♣ Fast Sepc. Charging/Discharging ♣ Low Cost Large Large 5.Energy Storage ♣ Maintenance Free Military (excellent cycle life) ( ll t l lif ) 4. Stationary Battery ♣ Excellent charge/discharge ♣ High Power efficiency ♣ Maintenance Free ♣ Low Cost ♣ Low Cost

  7. Small Size: Small Size: Diversity & specification of market Diversity & specification of market y y p p => => Rapid growth expected apid growth expected etc etc etc etc Mobile flexible market Mobile flexible market Note pc Note pc 12% 12% 38% 38% Flexible phone Flexible phone, flexible display, Flexible phone, flexible display, Flexible phone flexible display flexible display Cell phone Cell phone C ll C ll h h 50% 50% E- -paper, wearable PC, etc paper, wearable PC, etc ( 2008 yr) 2008 2008 2008 yr) ) ) Market size: 8 billion Note- Note -pc pc 23% 23% 23% 23% Mobile display Mobile display 23% 23% Cell phone Cell phone 30% 30% Market size: 20 billion

  8. Flexibility Flexible phone (Kyocera) Flexible phone (Kyocera)  Converging Converging Shape/ Shape/ BT BT + NT NT + IT IT + ET ET Design Flexibility Design Flexibility  Flexible & Flexible & Thin Thin- -film type film type Wireless- Wireless -Charging Charging Safety / Long cycle life S f t Safety / Long cycle life S f t / L / L l l lif lif Flexible OLED (LG Display) Flexible OLED (LG Display) Wireless/ Fast charging Wireless/ Fast charging Solid Type Solid Type E-paper FLEPia (Fujitsu) The Morph Concept phone (Nokia)* *http://www.youtube.com/watch?v=IX-gTobCJHs

  9. Current Technology New Technology* * Angew Chem. Int. Ed . 49, 2146, 2010 Adv. Mater. 22, 415, 2010

  10. Requirements for Electrode Materials Requirements for Electrode Materials  Cathodes  Electrode density  Cycle life  Structural stability (thermal stability) g g p y  Fast charging capability Cui et al. Nano Lett. 8, 3948 (2008) Nanoclustered Morphology  Anodes  Anodes  Electrode density  Cycle life  Cycle life  Fast charging capability  Volume expansion (<15%)  Volume expansion (<15%) J. Mater. Chem. 18, 2257 (2008)  Side reactions with electrolytes

  11. 1 1 기술의 기술의 개요 개요 2 연구목표 2 연 연 연구목표 및 연구단 목 목 및 연 연 연구단 구성 단 단 구성 성 Cathodes Cathodes Cathodes Cathodes 3 3 추진전략 3 추진전략 및 접근방법 추진전략 및 접근방법 추진전략 접근방법 접근방법 4 연구단 연구단 연구역량 연구역량 5 연구결과의 연구결과의 활용방안 활용방안 및 및 기대효과 기대효과

  12. Lithium Rich Layered Materials Lithium Rich Layered Materials Spinel Birnnesite (K x MnO 2 ) Nanowire Nanoplate L Layered α -NaFeO 2 d N F O Nano Lett. 8, 957(2008) Chem. Commu. 218 (2009)

  13. (c) (a) pH = 10, 5hrs As-prepared Ni 0.3 Mn 0.7 O 2 200 o C Layered Layered pH = 7, 2hrs R-3m Li[Li Li[Li 0.15 0.15 Ni Ni 0.25 0.25 Mn Mn 0.4 0.4 ]O ]O 2 Spinel Spinel 150 o C 150 o C (b) pH = 10, 2hrs pH = 2, 1.5hrs pH = 10, 5hrs pH = 2, 5hrs

  14. Cycling Results Cycling Results 5.0 2000 (a) al (V) (vs.Li) 1st 4.5 mAh/gv) 2nd 80th 4.0 10th cycle 1000 30th cycle dQ/dV(m 3.5 3 5 50th cycle 50th cycle Cell potentia 80th cycle 3.0 0 2.5 0.3C rate (120mA/g) 2.0 -1000 2 0 2.0 2.5 2 5 3 0 3.0 3 5 3.5 4 0 4.0 4.5 4 5 0 0 50 50 100 100 150 150 200 200 250 250 300 300 350 350 400 400 Cell potential(V) Capacity(mAh/g) city (mAh/g) 320 icient (%) 100 (d) 300 96 280 280 oulombic coeffi scharge capac 92 260 88 240 84 (b) (b) 220 220 Co Di  (d and e) after cycling 0 10 20 30 40 50 60 70 80 Cycle number 320 y (mAh/g) (e) 0.3C 280 Nanowire 1C 3C 3C harge capacity 5C 240 7C 200 Nanoplate 160 (c) (c) Disc 120 0 10 20 30 40 50 Cycle number

  15. Anodes 2 Anodes 2. 2. Anodes Anodes Anodes

  16. Candidates H He Li Be B C N O F Ne Na Na Mg Mg Al Al Si Si P P S S Cl Cl Ar Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Lithium reaction mechanisms Sn, Ge, and Si: M + xLi + + xe - ↔ Li x M 1) SnO + 4Li + + 4e − → Sn + 2Li O (1) 2) 2) SnO 2 + 4Li + 4e → Sn + 2Li 2 O (1) Sn + x Li + + x e − ↔ Li x Sn ( 0 ≤ x ≤ 4 . 4 ) (2) M II O + 2Li + + 2e − ↔ Li 2 O +M 0 (3d transition metal oxide) 3) 4) MP n ↔ Li x MP n (Li-intercalation) (1) MP n ↔ M (Li x M) + Li x P (metallization or metal alloying) (2)

  17. Volume change issue  Particle pulverization and isolation from the Cu collector  Particle pulverization and isolation from the Cu collector  Rapid capacity fade 2.5 2.5 2.0 2 3 ge(V) 1 1.5 Voltag 1.0 0.5 20 μ m 1 μ m 0.0 0 1000 2000 3000 4000 Capacity(mAh/g)

  18. Gravimetric vs. Volumetric capacity 4000 4000 Li Li Li 4.4 Si Si pacity ity 3000 3000 M) h/g-LixM ic Capaci etric Cap Li 4.1 Si Li 4.1 Ge LixM) Li Li 4.1 Sn Li 4 Pb (mAh 2000 2000 2000 2000 Gravime Volumetr (mAh/cc- Li 4.1 Ge Li 4.1 Sn G V ( 1000 1000 LiC 6 Li 4 Pb LiC 6 0 0

  19. Strategies*  Control of particle size (uniform dispersion) p ( p )  Formation of dimensionally stable coating layer  Artificial formation of “Buffer Zone” so as to alleviate volume change Charge Discharge *Adv. Funct. Mater. 19, 1497, 2009, Feature article Energy & Environ. Sci. 2, 181, 2009, Invited review article

  20. Role of pores Role of pores 2.5 a) 2.5 30 20 10 5 2 1 2.0 0.07 V 1.1 V a ) 2.0 I 1 5 1.5 1.5 V /V V /V 2.0 2.2 2.4 2.6 2.8 3.0 1.0 1.0 2  /degree Sn 2 P 2 O 7 0.5 0.5 0.0 30 20 10 5 2 1 3.75 b ) b) 2.0 3.70 1.5 V /V V /V 1.0 mesoporous/Sn 2 P 2 O 7 d /nm 3.65 0.5 0.0 3.60 3.60 0 0 200 200 400 400 600 600 800 800 1000 1000 1200 1200 -1 x /mAhg 3.55 0 400 800 1200 1600 -1 x /mAhg x /mAhg Charge Discharge Angew. Chem. Int. Ed. 43, 5987 (2004)

  21. Approaches Hollow 0D Nanoparticle assembly SiO 2 :CnHm-Metal gels = 7:3 (wt%) Δ & etching SiO 2 template Δ & etching Porous 3D Nanoparicle SiO 2 :CnHm-Metal assembly assembly gels = 3:7 (wt%) gels = 3:7 (wt%)

  22. Si precursor Annealing Annealing Et hi Etching SBA-15 Mesoporous nanowires * A Annealing li Etching Al 2 O 3 membrane template Nanotubes *Nano Lett. 8, 3688 (2008)

  23. 0D & 3D Ge porous particles* (a) silica template, (b) 0D hollow Ge nanoparticle assembly, (c) 3D porous Ge nanoparticle assembly, (d) is expanded image of (c), (e and f) high resolution TEM i image and Raman spectrum d R t * Adv. Mater. 22, 415, 2010

  24. 0D & 3D Ge porous particles – cycling result 5000 0D Hollow Ge 3D Porous Ge 2500 V(mAh/gV) 0 dQ/dV -2500 -5000 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Potential(V)

  25. 3D Porous Si Particles After etching After etching Before etching Before etching *Angew. Chem. Int. Ed., 47, 10151 (2008) (HOT article)

  26. Cycling results 3.0 (a) 2.5 2.5 2.0 2 3 1 0.2 C rate = metal) 1.5 Ex situ TEM 1.0 V) (vs. Lithium 0.5 0.0 3.0 (b) (b) ll Potential (V 2.5 C rate = 0.2 2.0 100,70,30,1 1.5 1 0 1.0 Ce 0.5 0.0 0 500 1000 1500 2000 2500 3000 3500 Capacity (mAh/g) Capacity (mAh/g) 2800 (c) 0.2 C rate (400 mA/g) 2400 1C rate (2000 mA/g) 2000 1600 1200 1200 0 20 40 60 80 100 Cycle number

  27. Si nanotubes After ultrasonic treatment After ultrasonic treatment *Nano Lett. 9, 3844, 2009 Highlighted in Nature Nanotech., Nature Mater. in Asia & MIT Technical Review

  28. Si nanotubes- Half and full cell tests (a) (c) (c) (d) (d) (b)

  29. Si nanotubes- Ex-situ TEM

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend