supernova energy reconstruction flash match
play

Supernova Energy Reconstruction Flash Match John M. LoSecco - PowerPoint PPT Presentation

Supernova Energy Reconstruction Flash Match John M. LoSecco University of Notre Dame November 20, 2019 Supernova Energy Reconstruction Flash Match (John LoSecco) 1/9 Introduction Energy Reconstruction Light flash observed Charge


  1. Supernova Energy Reconstruction Flash Match John M. LoSecco University of Notre Dame November 20, 2019 Supernova Energy Reconstruction Flash Match (John LoSecco) 1/9

  2. Introduction – Energy Reconstruction ◮ Light flash observed ◮ Charge collected ◮ Flash time matched to charge collection ◮ Electron lifetime correction to charge ◮ Corrected charge converted into energy Electrons have a finite lifetime before they are captured and no longer drift. The charge from energy deposited near the far wall is attenuated by about a factor of two while drifting to the collection plane. The light flash is also attenuated via Raleigh scattering. This can be as much as a factor of ≈ 100 from the far side of the detector. This is an effective attenution length of ≈ 75 cm. Supernova Energy Reconstruction Flash Match (John LoSecco) 2/9

  3. Simulations EnuT Heel htemp htemp htemp htemp 40000 Entries Entries 788000 788000 Entries Entries 788000 788000 Mean Mean 0.02283 0.02283 40000 Mean Mean 0.0162 0.0162 Std Dev Std Dev 0.008934 0.008934 Std Dev Std Dev 0.008299 0.008299 35000 35000 30000 30000 25000 25000 20000 20000 15000 15000 10000 10000 5000 5000 0 0 0 0.02 0.04 0.06 0.08 0.1 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 EnuT Heel ◮ Marley event generator ◮ Supernova ν e spectrum; no oscillations – left figure Xnu {Xnu>0.} htemp htemp 4500 Entries Mean Mean Entries 182.8 394786 182.8 394786 4000 Std Dev 104.3 Std Dev 104.3 3500 ◮ Uniform in the detector fiducial volume 3000 2500 2000 1500 1000 500 0 0 50 100 150 200 250 300 350 Xnu ◮ Compare with electron not neutrino energy – right figure ◮ Simulation reprocessed to get much higher light collection ◮ Simulation “frame” is two full drift times ◮ Only samples without radioactive backgrounds in this talk Supernova Energy Reconstruction Flash Match (John LoSecco) 3/9

  4. Flash with Distance abs(Xnu):(abs((0.08*(wireDepoTicks3*.5-Ltf)*2.)+5.0)) {wireDepoTicks3!=0.&&Ltf>-0.1&&Ltf<0.4} log10(Lef*exp(abs(Xnu)/75.)) {wireDepoTicks3>0.&&(Ltf>-0.1&&Ltf<0.4)&&(Heel>0.03&&Heel<0.04)&&abs(Xnu)<10.} htemp htemp abs(Xnu) Entries Entries 35 35 3 Mean Mean 3.407 3.407 350 Std Dev 0.2434 Std Dev 0.2434 2.5 300 250 2 200 1.5 150 1 100 0.5 50 0 0 0 50 100 150 200 250 300 350 3 3.2 3.4 3.6 3.8 4 (abs((0.08*(wireDepoTicks3*.5-Ltf)*2.)+5.0)) log10(Lef*exp(abs(Xnu)/75.)) Drift time vs drift distance, Left. Comparison of log10 corrected flash pulse amplitude near the collection (blue) and far from it (red) with a 75 cm attenuation length, Right. Supernova Energy Reconstruction Flash Match (John LoSecco) 4/9

  5. Flash with Distance II log10(Lef*exp(abs(Xnu)/75.)):abs(Xnu) {wireDepoTicks3>0.&&(Ltf>-0.1&&Ltf<0.4)&&(Heel>0.0125&&Heel<0.0175)&&log10(Lef*exp(abs(Xnu)/75.))>2.} Lef*exp(abs(Xnu)/78.5) {wireDepoTicks3>0.&&(Ltf>-0.1&&Ltf<0.4)&&(Heel>0.0125&&Heel<0.0175)&&Lef*exp(abs(Xnu)/75.)<4000.&&abs(Xnu)<22.5} htemp htemp log10(Lef*exp(abs(Xnu)/75.)) Entries Entries 485 485 Mean Mean 1163 1163 Std Dev 493.9 Std Dev 493.9 4 25 20 3.5 15 3 10 2.5 5 2 0 0 50 100 150 200 250 300 350 0 500 1000 1500 2000 2500 3000 3500 abs(Xnu) Lef*exp(abs(Xnu)/78.5) Log10 corrected light flash pulse amplitude vs distance for 15 MeV pulses, Left. Corrected flash pulse amplitude for near (blue) and far (red) with a 78.5 cm attenuation length, Right Supernova Energy Reconstruction Flash Match (John LoSecco) 5/9

  6. Reco Energy with Flash or Charge – MC Distance (Lef*exp(abs(Xnu)/75.))/1.016e+5:Heel {wireDepoTicks3>0.&&(Ltf>-0.1&&Ltf<0.4)&&(Heel>0.0&&Heel<0.04)&&Lef*exp(abs(Xnu)/75)<4000.} (charge*exp(abs(Xnu)/300.)/1.916e5):Heel {(Ltf>-0.1&&Ltf<0.4)&&Heel<0.04} 0.05 (Lef*exp(abs(Xnu)/75.))/1.016e+5 (charge*exp(abs(Xnu)/300.)/1.916e5) 0.04 0.045 0.035 0.04 0.03 0.035 0.025 0.03 0.025 0.02 0.02 0.015 0.015 0.01 0.01 0.005 0.005 0 0 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 Heel Heel Top: Corrected Flash energy vs MC energy, Left. Corrected Charge energy vs MC energy, Right. Supernova Energy Reconstruction Flash Match (John LoSecco) 6/9

  7. Reco Energy with Flash or Charge – MC Distance II ((Lef*exp(abs(Xnu)/75.))/1.016e+5):(charge*exp(abs(Xnu)/300.)/1.916e5) {wireDepoTicks3>0.&&(Ltf>-0.1&&Ltf<0.4)&&(Heel>0.0&&Heel<0.04)&&((Lef*exp(abs(Xnu)/75.))/1.016e+5)/(charge*exp(abs(Xnu)/300.)/1.916e5)<2.} ((Lef*exp(abs(Xnu)/75.))/1.016e+5)-(charge*exp(abs(Xnu)/300.)/1.916e5):Heel {wireDepoTicks3>0.&&(Ltf>-0.1&&Ltf<0.4)&&(Heel>0.0&&Heel<0.04)&&((Lef*exp(abs(Xnu)/75.))/1.016e+5)/(charge*exp(abs(Xnu)/300.)/1.916e5)<2.} 0.09 ((Lef*exp(abs(Xnu)/75.))/1.016e+5)-(charge*exp(abs(Xnu)/300.)/1.916e5) ((Lef*exp(abs(Xnu)/75.))/1.016e+5) 0.04 0.08 0.03 0.07 0.02 0.06 0.01 0.05 0 0.04 0.01 − 0.03 0.02 − 0.02 0.03 − 0.01 0.04 − 0 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 (charge*exp(abs(Xnu)/300.)/1.916e5) Heel Corrected Flash energy vs corrected charge energy, Left Corrected Flash energy minus corrected charge energy vs MC energy. Supernova Energy Reconstruction Flash Match (John LoSecco) 7/9

  8. Extra Flashes? – Clean Events Mean number of flashes is 1.54 per event or 1.57 excluding the 2% with no flash. 43% have more than 1 flash. Ltf:log10(Lef/Lef[0]) {wireDepoTicks3!=0.&&!(Ltf>-0.1&&Ltf<0.4)&&(Ltf>-.25&&Ltf<8.)&&NOf>1&&Lef!=Lef[0]} log10(Lef/Lef[0]):abs(Xnu) {wireDepoTicks3!=0.&&!(Ltf>-0.1&&Ltf<0.4)&&(Ltf>-.25&&Ltf<8.)&&NOf>1&&Lef!=Lef[0]} Ltf log10(Lef/Lef[0]) 8 2 7 1 6 5 0 4 1 − 3 2 2 − 1 3 − 0 4 − 4 3 2 1 0 1 2 0 50 100 150 200 250 300 350 − − − − log10(Lef/Lef[0]) abs(Xnu) The extra flashes are from 10 to 100 times smaller and 1 to 5 µ sec late, Left. The extra flashes are weaker if the vertex was near the collection, Right. Supernova Energy Reconstruction Flash Match (John LoSecco) 8/9

  9. Systematic Errors – Distance correction errors ◮ L Rayleigh at 128 nm ... Literature 90, 55 ± 5, 66 ± 3 cm. I calculated ≈ 75 cm from the MC ... use 75 cm to illustrate. ∆ x ◮ ∆ x ≈ 2 . 5 cm → L Rayleigh = 0 . 033 ◮ Correction is C = e x / L Rayleigh ◮ ∆ C = e x / L Rayleigh ∆ x L Rayleigh ◮ At x = 100 cm ∆ C = 12.5% ◮ At x = 300 cm ∆ C = 180% ◮ Drift offset: the vertex is not the drift distance since collection is not at X=0. — systematic error We need redundant flash information. Light collection on two walls. Supernova Energy Reconstruction Flash Match (John LoSecco) 9/9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend