studies
play

STUDIES SCUBA-2 Ultra Deep Imaging EAO Survey ang ( , ASIAA ) W - PowerPoint PPT Presentation

STUDIES SCUBA-2 Ultra Deep Imaging EAO Survey ang ( , ASIAA ) W ei - Hao W on behalf of the STUDIES Team Outline Motivation Survey description Results from the first year - 450 m counts - Counterpart properties -


  1. STUDIES 
 SCUBA-2 Ultra Deep Imaging EAO Survey ang ( 王 為豪 , ASIAA ) W ei - Hao W on behalf of the STUDIES Team

  2. Outline • Motivation • Survey description • Results from the first year - 450 μ m counts - Counterpart properties - case study: a z = 3.7 passive galaxy

  3. Motivation Frequency ν [GHz] Redshifted Arp 220 SED 10 6 10 5 10 4 10 3 10 2 10 1 10 -6 10 -6 10 3 10 2 10 -7 10 -7 10 1 z=0.5 Flux (mJy) 10 0 z=1 W m -2 sr -1 W m -2 sr -1 CMB 10 -8 10 -8 z=2 960 10 -1 z=4 z=6 10 -2 z=10 10 -9 10 -9 COB CIB 10 -3 23 24 10 -4 10 -10 10 -10 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 -1 -1 0 0 10 1 10 1 10 2 10 2 10 3 10 3 10 4 10 4 10 5 10 5 10 10 10 10 Wavelength (mm) Wavelength λ [ μ m] Wavelength λ [ m] Dole et al. (2006) • Half of the activities in the cosmic history is hidden by dust. • 450 μ m observations are sensitive to dust emission at intermediate redshifts (z ~ 1-3)

  4. Herschel 250 μ m, 350 μ m, 500 μ m Ks, IRAC Ch1+2, IRAC ch3+4

  5. SCUBA-2 Ultra Deep Imaging EAO Survey (STUDIES) • An EAO JCMT Large Program • To reach SCUBA-2 confusion limit at 450 μ m (~10 × deeper than Herschel at 350/500 μ m). • 650 hr of observing time with Band-1 weather: 
 - STUDIES-COSMOS (330 hr, approved in 2015) 
 - STUDIES-SXDS (aka. UDS, 320 hr, approved in 2017) 
 - both in the CANDELS regions • one Daisy pointing in each field 
 (D = 3’ ultradeep core + D = 15’ outer region) • σ 450 μ m ≲ 0.6 mJy in the core, < 3 mJy in the entire map • execution period: 2015–2020 • about 130 team members

  6. STUDIES: to detect typical dusty galaxies 850 μ m confusion limit STUDIES optical samples 850 μ m Herschel Limits (extinction corrected) samples STUDIES Barger et al. (2014) STUDIES will detect the typical members in the dusty galaxy population. • STUDIES will probe into the SFR of optically selected galaxies. •

  7. STUDIES-COSMOS 
 as of Feb 2017 (40% complete) 98 sources at > 4 σ central rms ~ 0.9 mJy > 200 expected at full depth

  8. SCUBA2 vs. Herschel SCUBA-2 450 μ m Herschel 500 μ m

  9. 450 μ m Counts 
 constrained with 4 σ sources and fluctuation analyses L IR ~ 1.5 × 10 11 L ⨀ , SFR ~ 25 M ⨀ /yr (z = 1.5) 10 6 10 4 dN/dS (deg -2 mJy -1 ) 10 2 4 σ sources fluctuation analyses 10 0 Schechter Fit Power-Law Fit 1 10 S 450 (mJy) Wang et al. (submitted, arXiv:1707.00990)

  10. 450 μ m Counts 
 compared with Herschel SPIRE counts 10 6 10 10 4 -1 ) 10 mJy -1 7x deeper -2 mJy dN/dS (deg -2 dN/dS (deg This Work This Wor 10 2 10 This Work, Schechter Fit This Work, Schechter Fit This Work, Power-Law Fi This Work, Power-Law Fit Oliver (2010) Herschel 500 um Oliver (2010) Herschel 350 um Clements (2010) Herschel 500 um 10 0 Clements (2010) Herschel 350 um 10 Valiante (2016) Herschel 500 um Valiante (2016) Herschel 350 um 1 10 10 S 450 450 (mJy) (mJy) Wang et al. (submitted, arXiv:1707.00990)

  11. 450 μ m Counts 
 compared with Herschel SPIRE counts 10 6 10 1.0 1.0 Transmission Transmission 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 10 4 -1 ) 10 mJy -1 0.0 0.0 -2 mJy 300 400 300 400 500 500 600 600 λ ( (um) m) dN/dS (deg -2 dN/dS (deg This Wor This Work 10 2 10 This Work, Schechter Fit This Work, Schechter Fit This Work, Power-Law Fi This Work, Power-Law Fit Glenn (2010) Herschel 500 um Glenn (2010) Herschel 350 um Oliver (2010) Herschel 500 um Oliver (2010) Herschel 350 um Clements (2010) Herschel 500 um 10 0 Clements (2010) Herschel 350 um 10 Bethermin (2012a) Herschel 500 um Bethermin (2012a) Herschel 350 um Valiante (2016) Herschel 500 um Valiante (2016) Herschel 350 um 1 10 10 S 450 450 (mJy) (mJy) Wang et al. (submitted, arXiv:1707.00990)

  12. 450 μ m Counts 
 compared with Herschel SPIRE counts 10 6 10 1.0 1.0 Transmission Transmission 0.8 0.8 0.6 0.6 • Herschel 500 μ m counts: 
 0.4 0.4 0.2 0.2 10 4 -1 ) - 1.4 × too high in flux 
 10 mJy -1 0.0 0.0 -2 mJy 300 400 300 400 500 500 600 600 or 
 λ ( (um) m) - 2.5 × too high in density dN/dS (deg -2 dN/dS (deg This Work This Wor 10 2 10 This Work, Schechter Fit This Work, Schechter Fit • Why? 
 This Work, Power-Law Fi This Work, Power-Law Fit Glenn (2010) Herschel 500 um Glenn (2010) Herschel 350 um - sources are clustered 
 Oliver (2010) Herschel 500 um Oliver (2010) Herschel 350 um - poor resolution (30 ″ ) 
 Clements (2010) Herschel 500 um 10 0 Clements (2010) Herschel 350 um 10 Bethermin (2012a) Herschel 500 um (Bethermin et al. 2007) Bethermin (2012a) Herschel 350 um Valiante (2016) Herschel 500 um Valiante (2016) Herschel 350 um 1 10 10 S 450 450 (mJy) (mJy) Wang et al. (submitted, arXiv:1707.00990)

  13. Resolved 450 μ m Background Integrated Surface Brightness (Jy deg -2 ) Planck 100 100 COBE EBL Fraction (%) This Work 10 Geach (2013) 10 Casey (2013) Chen (2013b) Hsu (2016) Zavala (2017) Bethermin (2012b) 450 µ m model Lacey (2016) 450 µ m model 1 1 10 S 450 (mJy) Wang et al. (submitted, arXiv:1707.00990)

  14. Counterpart Properties 
 (3GHz + 24 μ m identification) ◇ PACS sources (Symeonidis 2013, z<1.5) ◇ local galaxies 450 μ m detection limit (3.5 mJy, z=1) X.W. Shu et al. (in prep.)

  15. a case study

  16. A High-z Quiescent Galaxy • Glazebrook et al. (2017, Nature) • ZF-COSMOS-20115: 
 a massive post-starburst quiescent galaxy at z=3.717. • Quiescent because 
 1. strong Balmer absorption 
 2. no Herschel detection 11 M ⊙ • M ★ = 1.7 × 10 • requires a rapid formation Glazebrook et al. (2017) between z = 6 to 5.

  17. Quiescent or Starburst? • STUDIES detects it at 450 μ m (3 σ ) and 850 μ m (10 σ ). ALMA also detects it at 870 μ m (7 σ ). • SFR obscured ~ 100 M ⊙ /yr. • M ★ ,unobscured ~ 0.8 × 10 11 M ⊙ • No longer requires a rapid formation history at very high z. Simpson et al. (2017)

  18. Summary • STUDIES will observe two fields with extremely high sensitivity at 450 μ m, from 2015 to 2020. • Just 40% of the data in the COSMOS field (20% of whole STUDIES) can produce a large sample and highly accurate counts. • Herschel SPIRE counts are biased because of source clustering and low resolution. • non-detection in Herschel SPIRE bands ≠ quiescent. • More SCUBA-2 data are coming. More studies and followup observations are underway/planed.

  19. Questions/Open Issues • Nature of the offset between SCUBA2 and Herschel counts: 
 clustering? 
 flux calibration?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend