strong field driven electron dynamics in solids lecture 2
play

Strong-field-driven electron dynamics in solids Lecture 2 Vladislav - PowerPoint PPT Presentation

Strong-field-driven electron dynamics in solids Lecture 2 Vladislav S. Yakovlev Max Planck Institute of Quantum Optics Laboratory for Attosecond Physics Winter course on Advances in strong-field electrodynamics 4 February 2014, Budapest


  1. Strong-field-driven electron dynamics in solids Lecture 2 Vladislav S. Yakovlev Max Planck Institute of Quantum Optics Laboratory for Attosecond Physics Winter course on “Advances in strong-field electrodynamics” 4 February 2014, Budapest

  2. Outline • An overview of recent experiments • An overview of theoretical concepts and approaches – analytical approaches – numerical approaches – Metallisation of dielectric nanofilms (M. Stockman’s work) • Getting insight into optical-field-induced currents – Wannier-Stark interpretation – interference of multiphoton channels – semiclassical interpretation • Outlook

  3. Recent experiments

  4. HHG in ZnO with mid-IR pulses � ��� � 0.6 V/Å � � � 3.25 µ m

  5. HHG in ZnO with mid-IR pulses � ��� � 0.6 V/Å � � � 3.25 µ m HHG efficiency is sensitive to crystal orientation and laser ellipticity

  6. � ��� � 0.72 V/Å � � � 10 µ m ( � � 30 THz) HHG with THz pulses in GaSe

  7. HHG with THz pulses

  8. Franz-Keldysh at extreme intensities

  9. Franz-Keldysh at extreme intensities

  10. Franz-Keldysh at extreme intensities S. Ghimire et al. , PRL 107 , 167407 (2011) Conventional Franz-Keldysh effect (below the bandgap):    m E  4 2 ( ) 3/2 α ω ∝ − − ω ( ) exp ℏ   g e F 3 ℏ    

  11. Attosecond transient XUV absorption

  12. Experiment vs theory: SiO 2 Transient XUV absorption M. Schultze et al ., Nature 493 , 75 (2013) measurement – blue theory – red Interpretations: • Wannier-Stark… • EIT

  13. Controlling dielectrics with the electric field of light A “by-product” from the same measurement campaign: M. Schultze et al ., Nature 493 , 75 (2013)

  14. Optical-field-induced current in dielectrics

  15. Optical-field-induced current in dielectrics Energy � � � 4 eV � � x Au Au � � � 5 eV SiO 2

  16. Optical-field-induced current in dielectrics Laser pulses: 760 nm, 400 µJ, < 4 fs (< 1.5 cycles) F 0 ≤ 2 V/Å 3 kHz rep.rate, stabilised CEP Spacing between Au electrodes: ~50 nm No bias applied Active material: SiO 2 � Direct bandgap of ~9 eV � Optical breakdown at 2.5 x 10 15 W/cm

  17. Optical-field-induced current in dielectrics Two-pulse experiment Single-pulse experiment Schiffrin A., et al . Nature 493 , 70–74 (2013).

  18. Optical-field-induced current in dielectrics ∆ x Electric current is induced in a dielectric with a rise time of ~ 1 fs F 0 ≈ 1.7 V/Å

  19. Optical-field-induced current in dielectrics delay ∆ x (i) ≈ 2 V/Å, F 0 (d) ≈ 0.2 V/Å F 0 � CEP-controlled current � � � ��� � � � � � � ��� for the drive pulse � ⟹ subcycle creation of charge carriers

  20. GaN samples 5 nm Ti + 50 nm Au TEM grid GaN F 0 = 0.4 V/Å Al 2 O 3 GaN ~3.5 eV bandgap → 2-photon absorption of ~760 nm light (NIR) More advanced lithographic techniques @ LBNL (Berkeley) and WSI → controllable gaps (~ 50 nm – 300 µm)

  21. GaN samples (i) ≈ 0.4 V/Å F 0 (d) ≈ 0.06 V/Å F 0 ~2.5 fs Technique successfully adapted to flat lithographic GaN samples

  22. Solid-state light-phase detector T. Paasch-Colberg et al. , Nature Photonics (2014)

  23. Solid-state light-phase detector T. Paasch-Colberg et al. , Nature Photonics (2014)

  24. Solid-state light-phase detector � CEP-detection using one junction → phase-ambiguity � subsequent measurements with slightly changed CEP values � second junction for phase-disambiguation

  25. An overview of theoretical concepts and approaches

  26. The gauge choice ∂ ˆ TDSE: t ψ = ψ i t H t t ℏ ( ) ( ) ( ) ∂ 2 p ˆ ˆ = + r + F ⋅ r > length gauge: H U e t e ( ) ( ) , 0 LG m 2 good : F ( t ) is unambiguous bad : saw-tooth potential, coupled crystal momenta ( ) 2 + A p ˆ e t ( ) ˆ ′ = + r F = − A velocity gauge: H U t t ( ), ( ) ( ) VG m 2 good : periodic potential (dipole approximation) bad : the stationary problem must be solved accurately; time-dependent Hamiltonian for F ( t )=const i A r t ( ) ψ = ψ t e t ( ) ( ) ℏ the gauge transformation: LG VG

  27. Houston functions   ˆ 2 p r k + φ = ε φ U ( ) ( )   Let !,# $%& be Bloch states: k k n n n , , m 2   Let’s consider instantaneous eigenstates of the velocity- gauge Hamiltonian: ( )   2 + A p ˆ e t ( ) r  +  ϕ = ε ϕ U t ɶ t t ( ) ( ) ( ) ( )   m 2   i − A r ( ) t ′ r r k F ϕ = φ = − t e t e t ( , ) ( ), ( ) ( ) ℏ ℏ Solution: k k n n t , , ( ) 0 k ε = ε ɶ t ( ( )) k n n , 0 Houston functions = accelerated Bloch states analogous to Volkov states

  28. TDSE in the basis of Houston states i i t ∫ ′ ′ − ε k − A r t dt t = ∑ ( ( )) ( ) ψ α n φ t t e e ( ) ( ) Ansatz: ℏ ℏ 0 k k k n n t , , ( ) 0 0 n e ∂ k k A = − t t ˆ ( ) ( ) t ψ = ψ i t H t t ( ) ( ) ( ) ℏ 0 ℏ ∂ Solution for a linearly polarized field: i t i ∫ ( ) ′ ′ ∆ ε k t dt ∑ ( ) ( ) ′ k α = − α nq t eF t t B t e ( ) ( ) ( ) ( ) ℏ 0 k k n q nq , , ℏ 0 0 q Blount’s matrix element: ( ) ′ ′ ′ k k k ∆ ε = ε − ε t t t ( ) ( ( )) ( ( )) nq n q r k r ⋅ φ = i e u r ( ) ( ) k k n , n , i ∫ J. B. Krieger, G. J. Iafrate, k r r = ∂ * 3 B u u d r ( ) ( ) ( ) k k nq n k q unit , , PRB 33 , 5494 (1986) V x cell uc

  29. An approximate solution i t i ∫ ( ) k ′ ′ ∆ ε ∑ ( ) t dt ( ) ′ k α = − α nq t eF t t B t e ( ) ( ) ( ) ( ) ℏ 0 k k n q nq , , ℏ 0 0 q e k k A = − t t ( ) ( ) 0 ℏ In the limit of small excitation probabilities, i ′ t e ∫ ( ) ′′ ′′ k ∆ ε t t dt ( ) ( ) ∫ ′ ′ ′ k α ≈ − nq t i dt F t B t e ( ) ( ) ( ) ℏ 0 k n nq , ℏ 0 0 α = δ , (0) initial conditions: k n nq 0 This is a convenient starting point for analytical methods.

  30. Adiabatic perturbation theory ∂ • slowly varying Hamiltonian ( ) ˆ c t ψ = ψ i t H t t ( ) ( ) ( ) ℏ ∂ • the system remain in a nondegenerate eigenstate ( ) ˆ c c c c ϕ = ϕ H E ( ) ( ) ( ) − ∫ i t ( ) c ′ ′ E t dt ( ) ( ) γ c ψ = i t ϕ ( ) t e e t ( ) ( ) ℏ t Ansatz: 0 d d t ( ) ( ) ( ) ( ) ∫ ′ c c ′ c ′ c ′ γ ϕ = − ϕ ⇒ γ = ϕ ϕ i t t t t i dt t t ( ) ( ) ( ) ( ) ( ) ( ) ′ dt dt t 0 periodic motion: d t ( ) ( ) ( ) ( ) ∫ ∫ c c c c c γ = ϕ ϕ = ⋅ ϕ ∇ ϕ f � t i dt t t d i ( ) ( ) ( ) c d t t 0 Berry phase Berry connection

  31. Berry phase in Bloch bands 2 p ˆ ˆ r = + H U ( ) m 2 How to make the Hamiltonian k -dependent? k + 2 p ˆ ( ) ℏ ˆ − k r ⋅ k r ⋅ r = + i i e He U ( ) m 2 The eigenstates of the transformed Hamiltonian are the envelope functions ' (! ) � ' (! $) � *& ∫ k γ = ⋅ ∇ Zak d u i u Zak’s phase: k k k n n n BZ Berry connection D. Xiao et al. , RMP 82 , 1959 (2010)

  32. Length-gauge analysis For simplicity, 1D Periodic potential +$,& , homogeneous constant electric field �   2 p ˆ Wannier-Stark + + ϕ = ϕ + = U z eF z E U z a U z ( ) , ( ) ( )   Hamiltonian: m 2   Let �$, � -& be an eigenstate with energy � � .�- ∞ ∑ = ikla ϕ − b z k e z la Wannier-Bloch states: ( ; ) ( ) =−∞ l   ∂ 2 p ˆ   + + + = WB U z eF z i b z k E k b z k ( ) ( ; ) ( ) ( ; )     n n n ∂ m k 2    

  33. Wannier-Bloch states and TDSE   2 ∂ p ˆ   + + + = U z eF z i b z k E k b z k ( ) ( ; ) ( ) ( ; )     n n n ∂ m k 2     Neglecting interband transitions, approximate solutions of the TDSE can be constructed as   eF i eF     t ∫ ′ ′ ψ = − − − z t b z k t E k t dt ( , ) ; exp       n n n 0 0  ℏ  ℏ  ℏ    0 it E = ∑ WS − ψ ψ WS n z t z e ( , ) ( ) ℏ Fourier analysis: n nl l

  34. Wannier-Stark states Wannier-Stark ladder: a π a / ∫ WS = + E dk E k leaF ( ) π n 2 n − π a / Wannier-Stark states: a π a / − ∫ WS ilak ψ = z dk b z k e ( ) ( ; ) π n 2 nl − π a / � eigenstates of the Wannier-Stark Hamiltonian in the single-band approximation � localised on site / ; localisation length: Δ 1 /$.|�|& � form a basis � Zener tunnelling adds an imaginary part to WS energies

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend