a beginners guide to resurgence and trans series in
play

A Beginners Guide to Resurgence and Trans-series in Quantum Theories - PowerPoint PPT Presentation

A Beginners Guide to Resurgence and Trans-series in Quantum Theories Gerald Dunne University of Connecticut Recent Developments in Semiclassical Probes of Quantum Field Theories UMass Amherst ACFI, March 17-19, 2016 GD & Mithat nsal,


  1. A Beginners’ Guide to Resurgence and Trans-series in Quantum Theories Gerald Dunne University of Connecticut Recent Developments in Semiclassical Probes of Quantum Field Theories UMass Amherst ACFI, March 17-19, 2016 GD & Mithat Ünsal, reviews: 1511.05977, 1601.03414 GD, lectures at CERN 2014 Winter School GD, lectures at Schladming 2015 Winter School

  2. Lecture 1 ◮ motivation: physical and mathematical ◮ trans-series and resurgence ◮ divergence of perturbation theory in QM ◮ basics of Borel summation ◮ the Bogomolny/Zinn-Justin cancellation mechanism ◮ towards resurgence in QFT ◮ effective field theory: Euler-Heisenberg effective action

  3. Physical Motivation • infrared renormalon puzzle in asymptotically free QFT • non-perturbative physics without instantons: physical meaning of non-BPS saddles • "sign problem" in finite density QFT • exponentially improved asymptotics Bigger Picture • non-perturbative definition of non-trivial QFT, in the continuum • analytic continuation of path integrals • dynamical and non-equilibrium physics from path integrals • uncover hidden ‘magic’ in perturbation theory

  4. Physical Motivation • what does a Minkowski path integral mean? � i � � � � � − 1 D A exp � S [ A ] versus D A exp � S [ A ]  e − 2 3 x 3 / 2  , x → + ∞ 2 √ π x 1 / 4  � ∞   1 e i ( 1 3 t 3 + x t ) dt ∼ 2 π −∞  sin ( 2 3 ( − x ) 3 / 2 + π 4 )   , x → −∞ √ π ( − x ) 1 / 4 

  5. Physical Motivation • what does a Minkowski path integral mean? � i � � � � � − 1 D A exp � S [ A ] versus D A exp � S [ A ] 1.0 0.5 � 10 � 5 5 10 � 0.5 � 1.0  e − 2 3 x 3 / 2  , x → + ∞ 2 √ π x 1 / 4  � ∞   1 e i ( 1 3 t 3 + x t ) dt ∼ 2 π −∞  sin ( 2 3 ( − x ) 3 / 2 + π 4 )   , x → −∞ √ π ( − x ) 1 / 4 

  6. Mathematical Motivation Resurgence: ‘new’ idea in mathematics (Écalle, 1980; Stokes, 1850) resurgence = unification of perturbation theory and non-perturbative physics • perturbation theory generally ⇒ divergent series • series expansion − → trans-series expansion • trans-series ‘well-defined under analytic continuation’ • perturbative and non-perturbative physics entwined • applications: ODEs, PDEs, fluids, QM, Matrix Models, QFT, String Theory, ... • philosophical shift: view semiclassical expansions as potentially exact

  7. Resurgent Trans-Series • trans-series expansion in QM and QFT applications: ∞ ∞ k − 1 � � �� k � � �� l − c ± 1 � � � f ( g 2 ) = c k,l,p g 2 p exp ln g 2 g 2 � �� � p =0 k =0 l =1 perturbative fluctuations � �� � � �� � k − instantons quasi-zero-modes • J. Écalle (1980): closed set of functions: ( Borel transform ) + ( analytic continuation ) + ( Laplace transform ) − 1 g 2 , ln( g 2 ) , are familiar • trans-monomial elements : g 2 , e • “multi-instanton calculus” in QFT • new: analytic continuation encoded in trans-series • new: trans-series coefficients c k,l,p highly correlated • new: exponentially improved asymptotics

  8. Resurgence resurgent functions display at each of their singular points a behaviour closely related to their behaviour at the origin. Loosely speaking, these functions resurrect, or surge up - in a slightly different guise, as it were - at their singularities J. Écalle, 1980 n m

  9. Perturbation theory • perturbation theory generally → divergent series e.g. QM ground state energy: E = � ∞ n =0 c n ( coupling ) n ◮ Zeeman: c n ∼ ( − 1) n (2 n )! ◮ Stark: c n ∼ (2 n )! ◮ cubic oscillator: c n ∼ Γ( n + 1 2 ) ◮ quartic oscillator: c n ∼ ( − 1) n Γ( n + 1 2 ) ◮ periodic Sine-Gordon (Mathieu) potential: c n ∼ n ! ◮ double-well: c n ∼ n ! note generic factorial growth of perturbative coefficients

  10. Asymptotic Series vs Convergent Series N − 1 � c n ( x − x 0 ) n + R N ( x ) f ( x ) = n =0 convergent series: fixed | R N ( x ) | → 0 , N → ∞ , x asymptotic series: | R N ( x ) | ≪ | x − x 0 | N fixed x → x 0 , , N “optimal truncation”: − → truncate just before the least term ( x dependent!)

  11. Asymptotic Series: optimal truncation & exponential precision ∞ � 1 � ( − 1) n n ! x n ∼ 1 � 1 x E 1 x e x n =0 optimal truncation: N opt ≈ 1 x ⇒ exponentially small error √ Ne − N ≈ e − 1 /x | R N ( x ) | N ≈ 1 /x ≈ N ! x N � N ≈ 1 /x ≈ N ! N − N ≈ √ x � � � 0.920 0.90 � � � � 0.918 � 0.85 � 0.916 � � � � � � � � � � � � � � � 0.914 0.80 � � � 0.912 0.75 20 N N � �� � 0 5 10 15 2 4 6 8 ( x = 0 . 1) ( x = 0 . 2)

  12. Borel summation: basic idea � ∞ 0 dt e − t t n write n ! = alternating factorially divergent series: � ∞ ∞ 1 � ( − 1) n n ! g n = dt e − t (?) 1 + g t 0 n =0 integral convergent for all g > 0 : “Borel sum” of the series

  13. Borel Summation: basic idea � ∞ ∞ 1 � ( − 1) n n ! x n = dt e − t 1 + x t 0 n =0 1.2 1.1 1.0 0.9 0.8 0.7 0.4 x 0.0 0.1 0.2 0.3

  14. Borel summation: basic idea � ∞ 0 dt e − t t n write n ! = non-alternating factorially divergent series: � ∞ ∞ 1 � n ! g n = dt e − t (??) 1 − g t 0 n =0 pole on the Borel axis!

  15. Borel summation: basic idea � ∞ 0 dt e − t t n write n ! = non-alternating factorially divergent series: � ∞ ∞ 1 � n ! g n = dt e − t (??) 1 − g t 0 n =0 pole on the Borel axis! ⇒ non-perturbative imaginary part ± i π g e − 1 g but every term in the series is real !?!

  16. Borel Summation: basic idea � ∞ � � ∞ � 1 � 1 − x t = 1 1 � x e − 1 n ! x n dt e − t Borel x Ei ⇒ R e = P x 0 n =0 2.0 1.5 1.0 0.5 3.0 x 0.5 1.0 1.5 2.0 2.5 � 0.5

  17. Borel summation Borel transform of series f ( g ) ∼ � ∞ n =0 c n g n : ∞ c n � n ! t n B [ f ]( t ) = n =0 new series typically has finite radius of convergence. Borel resummation of original asymptotic series: � ∞ S f ( g ) = 1 B [ f ]( t ) e − t/g dt g 0 warning: B [ f ]( t ) may have singularities in (Borel) t plane

  18. Borel singularities avoid singularities on R + : directional Borel sums: � e iθ ∞ S θ f ( g ) = 1 B [ f ]( t ) e − t/g dt g 0 C + C - go above/below the singularity: θ = 0 ± non-perturbative ambiguity: ± Im[ S 0 f ( g )] − → challenge: use physical input to resolve ambiguity

  19. Borel summation: existence theorem (Nevanlinna & Sokal) � � � < R � z − R f ( z ) analytic in circle C R = { z : 2 } 2 N − 1 � a n z n + R N ( z ) | R N ( z ) | ≤ A σ N N ! | z | N f ( z ) = , n =0 Borel transform R/2 ∞ a n � n ! t n B ( t ) = n =0 Im(t) analytic continuation to S σ = { t : | t − R + | < 1 /σ } 1/ σ � ∞ Re(t) f ( z ) = 1 e − t/z B ( t ) dt z 0

  20. Borel summation in practice ∞ � c n ∼ β n Γ( γ n + δ ) c n g n f ( g ) ∼ , n =0 • alternating series: real Borel sum � � t � t � � 1 /γ � � ∞ � � δ/γ f ( g ) ∼ 1 dt 1 − exp γ t 1 + t βg βg 0 • nonalternating series: ambiguous imaginary part � � t � t � � 1 /γ � � ∞ � � δ/γ 1 dt 1 Re f ( − g ) ∼ γ P exp − t 1 − t βg βg 0 � 1 � 1 � � 1 /γ � � δ/γ ± π Im f ( − g ) ∼ − exp γ βg βg

  21. Resurgence and Analytic Continuation another view of resurgence: resurgence can be viewed as a method for making formal asymptotic expansions consistent with global analytic continuation properties “the trans-series really IS the function” ⇒ (question: to what extent is this true/useful in physics?)

  22. Resurgence: Preserving Analytic Continuation • zero-dimensional partition functions � 1 � ∞ � √ 1 dx e − 1 λ x ) = 1 2 λ sinh 2 ( 4 λ K 0 √ Z 1 ( λ ) = e 4 λ λ −∞ � π ∞ ( − 1) n (2 λ ) n Γ( n + 1 2 ) 2 � Borel-summable ∼ � 1 � 2 2 n ! Γ n =0 2 √ � 1 � π/ � λ √ λ x ) = π dx e − 1 2 λ sin 2 ( e − 1 4 λ I 0 √ Z 2 ( λ ) = 4 λ λ 0 � π ∞ (2 λ ) n Γ( n + 1 2 ) 2 � non-Borel-summable ∼ � 1 � 2 2 n ! Γ n =0 2 • naively: Z 1 ( − λ ) = Z 2 ( λ )

  23. Resurgence: Preserving Analytic Continuation • zero-dimensional partition functions � 1 � ∞ � √ 1 dx e − 1 λ x ) = 1 2 λ sinh 2 ( 4 λ K 0 √ Z 1 ( λ ) = e 4 λ λ −∞ � π ∞ ( − 1) n (2 λ ) n Γ( n + 1 2 ) 2 � Borel-summable ∼ � 1 � 2 2 n ! Γ n =0 2 √ � 1 � π/ � λ √ λ x ) = π dx e − 1 2 λ sin 2 ( e − 1 4 λ I 0 √ Z 2 ( λ ) = 4 λ λ 0 � π ∞ (2 λ ) n Γ( n + 1 2 ) 2 � non-Borel-summable ∼ � 1 � 2 2 n ! Γ n =0 2 • naively: Z 1 ( − λ ) = Z 2 ( λ ) • connection formula: K 0 ( e ± iπ | z | ) = K 0 ( | z | ) ∓ i π I 0 ( | z | ) Z 1 ( e ± iπ λ ) = Z 2 ( λ ) ∓ i e − 1 ⇒ 2 λ Z 1 ( λ )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend