strong disorder ferromagnetic quantum phase transitions
play

Strong-disorder ferromagnetic quantum phase transitions Thomas Vojta - PowerPoint PPT Presentation

Strong-disorder ferromagnetic quantum phase transitions Thomas Vojta Department of Physics, Missouri University of Science and Technology Dresden, May 6, 2019 Collective modes at a disordered quantum phase transition Thomas Vojta Department of


  1. Strong-disorder ferromagnetic quantum phase transitions Thomas Vojta Department of Physics, Missouri University of Science and Technology Dresden, May 6, 2019

  2. Collective modes at a disordered quantum phase transition Thomas Vojta Department of Physics, Missouri University of Science and Technology, USA Dresden, May 6, 2019

  3. Outline • Collective modes: Goldstone and amplitude (Higgs) • Superfluid-Mott glass quantum phase transition Martin Puschmann • Fate of the collective modes at the Jose Hoyos superfluid-Mott glass transition • Conclusions Jack Crewse Cameron Lerch

  4. Broken symmetries and collective modes • collective excitation in systems with broken continuous symmetry , e.g., − planar magnet breaks O(2) rotation symmetry − superfluid wave function breaks U(1) symmetry • Amplitude(Higgs) mode : corresponds to fluctuations of order parameter amplitude • Goldstone mode : corresponds to fluctuations of order parameter phase • Amplitude mode is condensed matter analogue of famous Higgs boson effective potential for order parameter in symmetry-broken phase

  5. What is the fate of the Goldstone and amplitude modes near a disordered quantum phase transition?

  6. • Collective modes: Goldstone and amplitude (Higgs) • Superfluid-Mott glass quantum phase transition • Fate of the collective modes at the superfluid-Mott glass transition • Conclusions

  7. Disordered interacting bosons Ultracold atoms in optical potentials: • disorder: speckle laser field • interactions: tuned by Feshbach resonance and/or density F. Jendrzejewski et al., Nature Physics 8, 398 (2012) 1.0 Disordered superconducting films: 3 0.8 G(V)/G(4mV) 0.6 • energy gap in insulating as well as (V) 0.4 H=11T 2 0.2 superconducting phase 0.0 (V)/G -4 -3 -2 -1 0 1 2 3 4 V(mV) • preformed Cooper pairs ⇒ superconducting H=0 1 transition is bosonic G -2 -1 0 1 2 3 4 V(mV) Sherman et al., Phys. Rev. Lett. 108, 177006 (2012)

  8. Disordered interacting bosons Bosonic quasiparticles in doped quantum magnets: Yu et al., Nature 489, 379 (2012) • bromine-doped dichloro-tetrakis-thiourea-nickel (DTN) • coupled antiferromagnetic chains of S = 1 Ni 2+ ions • S = 1 spin states can be mapped onto bosonic states with n = m s + 1

  9. Bose-Hubbard model Bose-Hubbard Hamiltonian in two dimensions: H = U n i ) 2 − � � J ij ( a † (ˆ n i − ¯ i a j + h.c. ) 2 i � i,j � • superfluid ground state if Josephson couplings J ij dominate • insulating ground state if charging energy U dominates • chemical potential µ i = U ¯ n i Particle-hole symmetry: • large integer filling ¯ n i = k with integer k ≫ 1 ⇒ Hamiltonian invariant under ( ˆ n i − ¯ n i ) → − (ˆ n i − ¯ n i )

  10. Phase diagrams (a) (b) (c) ~ µ ~ ~ µ /U µ /U /U 0 0 0 3 _ 3 _ 3 _ SF SF SF 2 2 2 MI MI <n>=1 MI <n>=1 <n>=1 1 n=1 1 1 n=1 +δ n=1 1 _ ~ ~ (µ) µ ( ) 2 J J 0 1 _ 1 1 ______ _ _ 0,c − δ ______ + BG BG MG − + 2 U 2 2 U 0 0 −δ 1 _ MI MI MI <n>=0 2 <n>=0 <n>=0 0 0 0 J /U 0 J J /U 0 /U n=0 n=0 0 0 0 n=0 0 ~ (µ) J 0,c 1 −1 _ _ −1 _ ________ SF − BG BG SF (1+δ ) 2 2 2 U + 0 −1 MI MI <n>=−1 MI <n>=−1 <n>=−1 −1 −1 n=−1 n=−1 n=−1 SF 3 _ 3 −3 _ _ − −2 2 2 clean random potentials random couplings Weichman et al., Phys. Rev. B 7, 214516 (2008)

  11. Stability of clean quantum critical point against dilution Site dilution: • randomly remove a fraction p of lattice sites • superfluid phase possible for 0 ≤ p ≤ p c (percolation threshold) Harris criterion: • for dilution p = 0 , quantum critical point is in 3D XY universality class • correlation length critical exponent ν ≈ 0 . 6717 • clean ν violates Harris criterion dν > 2 with d = 2 ⇒ clean critical behavior unstable against disorder (dilution) Critical behavior of superfluid-Mott glass transition must be in new universality class

  12. Monte Carlo simulations • large-scale Mote Carlo simulations in 6 p = 5 2d and 3d 1 / 8 1 / 5 4 2 / 7 • conventional critical behavior with 1 / 3 3 /L 9 / 25 universal exponents for dilutions L max 0 < p < p c 2 τ • Griffiths singularities exponentially weak ( see classification in J. Phys. A 39 , 1 R143 (2006), PRL 112 , 075702 (2014) ) 10 100 L (2+1)D exponents (3+1)D exponents exponent clean disordered exponent clean disordered z 1 1.52 z 1 1.67 ν 0.6717 1.16 ν 0.5 0.90 β/ν 0.518 0.48 β/ν 1 1.09 γ/ν 1.96 2.52 γ/ν 2 2.50

  13. • Collective modes: Goldstone and amplitude (Higgs) • Superfluid-Mott glass quantum phase transition • Fate of the collective modes at the superfluid-Mott glass transition • Conclusions

  14. Amplitude mode: scalar susceptibility • parameterize order parameter fluctuations into amplitude and direction � φ = φ 0 (1 + ρ )ˆ n • Amplitude mode is associated with scalar susceptibility χ ρρ ( � x, t ) = i Θ( t ) � [ ρ ( � x, t ) , ρ (0 , 0)] � • Monte-Carlo simulations compute imaginary time correlation function χ ρρ ( � x, τ ) = � ρ ( � x, τ ) ρ (0 , 0) � • Wick rotation required: analytical continuation from imaginary to real times/frequencies ⇒ maximum entropy method

  15. Amplitude mode in clean undiluted system Scaling form of the scalar susceptibility: [Podolsky + Sachdev, PRB 86, 054508 (2012)] χ ρρ ( ω ) = | r | 3 ν − 2 X ( ω | r | − ν ) 0.14 1 ν=0.664 0.12 0.5 0.1 ω Η 0.08 A( ω ) T= 2.002 0.2 0.06 2.052 2.082 2.102 0.04 0.01 0.03 0.1 2.122 T c -T 2.142 2.162 0.02 2.182 2.192 0 0 0.5 1 1.5 2 2.5 3 ω • sharp Higgs peak in spectral function • Higgs energy (mass) ω H scales as expected with distance from criticality r

  16. Amplitude mode in disordered system dilution p=1/3 0.05 T c =1.577 0.04 T= 1.200 0.03 A( ω ) 1.300 1.350 1.400 0.02 1.450 1.500 1.525 0.01 1.550 1.575 0 0 0.5 1 1.5 2 2.5 3 ω • spectral function shows broad peak near ω = 1 • peak is noncritical: does not move as quantum critical point is approached • amplitude fluctuations not soft at criticality • violates expected scaling form χ ρρ ( ω ) = | r | ( d + z ) ν − 2 X ( ω | r | − zν )

  17. What is the reason for the absence of a sharp amplitude mode at the superfluid-Mott glass transition?

  18. Quantum mean-field theory H = U n i ) 2 − J ǫ i ǫ j ( a † � � ǫ i (ˆ n i − ¯ i a j + h.c. ) 2 i � i,j � • truncate Hilbert space: keep only states | ¯ n − 1 � , | ¯ n � , and | ¯ n + 1 � on each site Variational wave function: � 1 � � θ i � � θ i �� � � e iφ i | ¯ n + 1 � i + e − iφ i | ¯ � √ | Ψ MF � = | g i � = cos | ¯ n � i + sin n − 1 � i 2 2 2 i i • locally interpolates between Mott insulator, θ = 0 , and superfluid limit, θ = π/ 2 Mean-field energy: � θ i � E 0 = � Ψ MF | H | Ψ MF � = U � � ǫ i sin 2 − J ǫ i ǫ j sin( θ i ) sin( θ j ) cos( φ i − φ j ) 2 2 i � ij � • solved by minimizing E 0 w.r.t. θ i ⇒ coupled nonlinear equations

  19. m Diluted lattice: order parameter • local order parameter: m i = � a i � = sin( θ i ) e iφ i (dilution p = 1 / 3 ) 0.6 typical mean 0.4 U = 12 U = 14 U = 8 U = 10 0.0 0.2 0.4 0.6 0.8 1.0 mi 0.2 0.0 7 8 9 10 11 12 13 14 U

  20. Mean-field theory: excitations • define local excitations (orthogonal to | g i � , OP phase fixed at 0) � 1 � θ i � � θ i | g i � = cos | ¯ n � i + sin √ 2 ( | ¯ n + 1 � i + | ¯ n − 1 � i ) 2 2 � 1 � θ i � � θ i √ | θ i � = sin | ¯ n � i − cos 2 ( | ¯ n + 1 � i + | ¯ n − 1 � i ) 2 2 1 √ | φ i � = 2 ( | ¯ n + 1 � i − | ¯ n − 1 � i ) • expand H to quadratic order in excitations: H = E 0 + H θ + H φ    U  ǫ i b † � � H θ = 2 + 2 J sin( θ i ) sin( θ j ) θi b θi j ′ i � cos( θ i ) cos( θ j ) ǫ i ǫ j ( b † θi + b θi )( b † − J θj + b θj ) � ij � H φ has similar structure but different coefficients

  21. 15 200 ..../ 0 5 10 computation) 20 Higgs ( m Goldstone (computation) ../ ..../ €?, 100 0 5 • 0 --- ' ' 6* ' -.� � ' ' 1,--� ω 02 25 20 Higgs 15 \ \ \ ' Goldstone 0.5 �--......./....../...../...../ • Computation -- Superfmuid - w = v�l-�( V�/1-6�)�2 Insulator - W = 0 o ..../....../ -......./...../ � ...../....../..../....../...../...../...../....../..../...../ �, Clean system: results • mean-field quantum phase transition at U = 16 J • all excitations are spatially extended (plane waves) Mott insulator • all excitations are gapped U Superfluid - -0/ - -0/ • Goldstone mode is gapless • amplitude (Higgs) modes is gapped, gap vanishes at QCP 10 U

  22. Diluted lattice: Goldstone mode • Goldstone mode becomes massless in superfluid phase, as required by Goldstone’s theorem • wave function of lowest excitation for U = 8 to 15 • localized in insulator, delocalizes in superfluid phase

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend