stm and spectroscopy of nanosized ferromagnetic structures
play

STM and spectroscopy of nanosized ferromagnetic structures - PowerPoint PPT Presentation

School on magnetism, Cluj, September 2007 STM and spectroscopy of nanosized ferromagnetic structures Guillemin Rodary (Max Planck Institute, Halle, Germany) Ferromagnetic nanostructures L sample L exch L domain wall Gas phase


  1. School on magnetism, Cluj, September 2007 STM and spectroscopy of nanosized ferromagnetic structures Guillemin Rodary (Max Planck Institute, Halle, Germany)

  2. Ferromagnetic nanostructures • L sample ≈ L exch ≈ L domain wall Gas phase nucleation ⇒ monodomaine (Stoner-Wohlfarth switching ?) Bonet,PRL 83, 4188 (1999) • Temperature could overcome anisotropy kT ≈ KV ⇒ superparmagnetism Bean, JAP 30, 120S (1959) Néel, Ann. Geopgys. 5, 99 (1949) Jamet, PRB 69, 024401 (2004). • Atoms with low coordination Thermal evaporation ⇒ K surface or M could be very high Gambardela, Science 300, 1130 (2003) • Quantum effects (discrete states, collective tunneling) Bernand-Mantel , APL 89, 062502 (2006) Wernsdorfer,PRL 79, 4014 (1997) 50 nm

  3. Probing nanomagnetism Imaging See review Freeman, Science 294, 1484 (2001) Sensitive to Typical resolution Specificity MOKE M 500nm Easy to use and cheap Argyle, JAP 87, 6487 (2000) XMCD-PEEM M <10nm Element specific, dynamic, synchrotron Vogel, PRB 72, 220402 (2005) SEMPA M 10nm Vectorial M, surface Allenspach, JMMM 129, 160 (1994) ∇ B Lorentz <10nm Average over sample, no field Chapman, JMMM 200, 729 (1999) ∇ B MFM 50nm Insulator OK, not quantitative Folks, APL 76, 909 (2000) SP-STM TMR <1nm No insulator, smooth surface, topography and spectro Magnetometry • SQUID, MOKE: thin films: OK nanoparticles : average over an assembly of identical objects Rohart, PRB 73, 165412 (2006) • µ-SQUD: able to measure the switching field of a single nanostructure Jamet, PRB 69, 024401 (2004) Spin dependant transport Bernand-Mantel , APL 89, 062502 (2006) Lithography allows to take contact up to 10~100nm Ralph, PRL 74, 3241 (1995)

  4. Scanning tunneling microscopy V Surface Tip Barrier φ eV d − φ − ∝ d eV I e tunnel Topography image a constant current

  5. Scanning tunneling microscopy V Surface Tip Barrier φ eV d − φ − ∝ d eV I e tunnel Topography image a constant current

  6. Scanning tunneling microscopy V Surface Tip Barrier φ eV d − φ − ∝ d eV I e tunnel Topography image a constant current

  7. Scanning tunneling microscopy Ultra high vacuum: 10 -11 mbar Low temperature: T = 4 K V High magnetic field: B= 8 T → Surface science, Surface electronic properties and nanomagnetism Tip Barrier φ eV d − φ − ∝ d eV I e tunnel Topography image a constant current

  8. Growth of nanostructures studied by STM Nanodots Nanopillars 1D chains Co/Au(788) Co/Au(111) Co/Pt(997) Repain, EPL 58, 730 (2002) Fruchart, PRL 83, 2769 (1999) Gambardella, JPhysCondMat 15, 2533 (2003) 480K 280K 130K 150 nm • Chains width of 1, 2 or 3 atoms 60 nm • Temperature growth ⇒ • Ferromagnetic behavior with • 3D structures very high magnetic moment Diffusion coefficient + trap energy • Aspect ration 2:1 • Reduce dimensionality ⇒ • Periodical array of similar dots ⇒ • Blocking temperature: strong magnetic anisotropy from 20 K to 300K Array = N x single dot

  9. Scanning tunneling spectroscopy ( ) LDOS map ∫ eV ∝ ε I ( r ) LDOS r , E d → Electronic structures tunnel 0 = ∑ ( ) ψ 2 δ E − LDOS r , E ( r ) ( E ) ν ν ν d I ( ) ∝ ( r , E ) LDOS r , E d V Density of electronic states Co on Cu, 40x40nm available for tunneling Point spectroscopy → LDOS at a nanoscale 9 Minority Co state dI/dV (arb. units) 6 Co island Bare Cu (x4) 3 Cu surface state 0 -0.8 -0.4 0.0 0.4 0.8 Voltage (V)

  10. Principle of Spin-Polarized STM Magnetic tunnel junction with vacuum Antiparallel 94 Cr Tip 92 Resistance (k Ω ) 90 Vaccum Parallel 88 Co island 86 High 84 current -0.10 -0.05 0.00 0.05 0.10 Applied field (T) Low current V 1 Bode, Getzlaff, Wiesendanger, Phys. Rev. Lett. 81, 4256 (1998). Wulfhekel, Kirschner, Appl. Phys. Lett. 75, 1944 (1999)

  11. Principle of Spin-Polarized STM Magnetic tunnel junction with vacuum Antiparallel 94 Cr Tip 92 Resistance (k Ω ) 90 Vaccum Parallel 88 Co island 86 High 84 current -0.10 -0.05 0.00 0.05 0.10 Applied field (T) V 1 Low current V 1 Bode, Getzlaff, Wiesendanger, Phys. Rev. Lett. 81, 4256 (1998). Wulfhekel, Kirschner, Appl. Phys. Lett. 75, 1944 (1999)

  12. Principle of Spin-Polarized STM Magnetic tunnel junction with vacuum Antiparallel 94 Cr Tip 92 Resistance (k Ω ) 90 Vaccum Parallel 88 Co island 86 High 84 current -0.10 -0.05 0.00 0.05 0.10 Applied field (T) V 1 Low current V 1 Bode, Getzlaff, Wiesendanger, Phys. Rev. Lett. 81, 4256 (1998). Wulfhekel, Kirschner, Appl. Phys. Lett. 75, 1944 (1999)

  13. Nanomagnetism: imaging of spin structure Magnetic surface reconstruction - “Spin maps” made at constant current and at fixed voltage - Spin sensitivity of the tip in or out of plane 1ML of Mn on Fe(001) Gao, PRL 98, 107203 (2007)) Single magnetic atoms Magnetic nanostructures In-plane Cr tip Out-of-plane Cr tip Atoms on Co islands Vortex in Fe island on W(110), Wachoviak, Science 298, 577 (2002) Yayon, PRL 99 , 067202 (2007)

  14. Co island on Cu(111) Co deposition at 300K on Cu(111) ⇒ Triangular Co islands ⇒ Step edge decoration 50 x 50 nm 2 , -0.36 V, 1 nA 0.4 Linescan Height (nm) 0.3 2 monolayer high 0.2 island 0.1 750 x 750 nm 2 , -0.8 V, 1 nA 0.0 0 5 10 15 20 25 Position (nm)

  15. Spectroscopy on a single island dI/dV image Point spectroscopy on the island 0.5 dI/dV (arb. units) 0.5 0.0 dI/dV (arb. units) 0.0 -0.5 -0.6 -0.3 0.0 0.3 0.6 -0.5 Asymmetry Faulted island -1.0 Unfaulted island -1.5 50 x 50 nm 2 , -0.36 V, 1 nA -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 fcc site Hcp site Voltage (V) 1st Cu 2d Cu Faulted Unfaulted 3d Cu Co Vazquez de Parga, Garcia-Vidall, Miranda, PRL 85, 4365 (2000) and Pietzsch, Kubtzka, Bode, Wiesendanger, PRL 92, 057202 (2004)

  16. Spectroscopy on a single island I(V) and dI/dV(V) curves measured at island center Extraction of the hysteresis cycle In field spectroscopy at different voltages 12 10 0 T 10 - 1 T dI/dV (arb. units) 8 dI/dV (arb. units) - 4 T - 1 T 8 6 0 T 6 4 -0.3V 2 4 -0.6V 0 2 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 -4 -3 -2 -1 0 1 2 3 4 Voltage (V) Field (T) - TMR hysteresis loop of a single nanostructure - Understanding the relative magnetic orientation of tip and sample - Measure the TMR at a nanoscale

  17. Size dependence of the switching field 7 1.0 T 1.2 T 1.8 T 6 2430 atoms 4210 atoms dI/dV (arb. units) 5 4820 atoms 4 3 2 1 0 1 2 3 4 Regime between superparamgnetism Field (T) and multi-domain island 2.0 Switching field Switching field (T) 1.5 2K/M S 1.0 Monodomaine Multidomaine ~1/V 0.5 Superpara 0.0 Volume 0 2000 4000 6000 Atom number

  18. Conclusion • STM: study of growth, structure and organization of ferromagnetic nanostructures (films, dots, pillars, chains…) 9 Minority Co state • STS: - mapping of the electronic structure (standing waves) dI/dV (arb. units) 6 Co island - locales density of states on nanostructures Bare Cu (x4) - structure caracterisation 3 Cu surface state 0 • SP-STM: - spin map in and out of plane with atomic resolution -0.8 -0.4 0.0 0.4 0.8 Voltage (V) - spin dependant transport (TMR) at a nanoscale - study of switching of a single nanoobject 12 10 dI/dV (arb. units) 8 6 -0.3V 4 -0.6V 2 -4 -3 -2 -1 0 1 2 3 4 Field (T)

  19. Size dependence of the island switching field 2.0 7 6 2430 atoms Switching field (T) 1.5 4210 atoms dI/dU (arb. units) 5 4820 atoms 4 1.0 3 0.5 2 1 0.0 0 2000 4000 6000 0 1 2 3 4 Field (T) Atom number

  20. Observation of Magnetic Hysteresis at the Nanometer Scale by Spin- polarized Scanning Tunneling Spectroscopy O. Pietzsch, A. Kubetzka, M. Bode, R. Wiesendanger, Science 292, 2053 (2001)

  21. L. Niebergall, V. S. Stepanyuk, J. Berakdar, and P. Bruno, PRL 96 , 127204 (2006)

  22. Introduction: context of SP-STM Surface Science Spintronic Scanning tunneling microscope Tunnel Magnetoresitance Atomic resolution Cu(111), 2x2nm Co nanostructure on Cu(111) 50x50nm Co/Al 2 O 3 /NiFe tunnel junction 94 92 Resistance (k Ω ) 90 88 86 84 -0.10 -0.05 0.00 0.05 0.10 Applied field (T) Spin-polarized STM 12 10 dI/dV (arb. units) 8 6 -0.3V 4 -0.6V 2 -4 -3 -2 -1 0 1 2 3 4 Field (T)

  23. 9 Minority Co state dI/dV (arb. units) 6 Co island Bare Cu (x4) 3 Cu surface state 0 -0.8 -0.4 0.0 0.4 0.8 Voltage (V)

  24. Principe of TMR Jullière model: Open questions: - Spin is conserved during tunneling - Conductance ∝ DOS of electrodes - TMR sign, depend only of P 1 P 2 ? ↑ ↑ ↓ ↓ ∝ + P - Interface electrode/barrier ? G N . N N . N 1 2 1 2 ↑ ↓ ↓ ↓ ∝ + AP - Voltage dependence ? G N . N N . N 1 2 1 2 - Influence of the DOS ? d ↑ s ↑ d s ↓ ↑ ↓ − N N = d ↓ i i P i ↑ + ↓ N N i i E F − P AP G G ≡ = TMR P 1 P + 2 P AP G G = + G G ( 1 P P cos( M , M ) ) 1 Teresa et al. Science 286, 507 (1999) 0 1 2 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend