spin dynamics in a doped ferromagnetic bose hubbard
play

Spin dynamics in a doped ferromagnetic Bose-Hubbard insulator M. - PowerPoint PPT Presentation

Spin dynamics in a doped ferromagnetic Bose-Hubbard insulator M. Zvonarev, T. Giamarchi, V. Cheianov Lancaster University University of Geneve M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in


  1. Spin dynamics in a doped ferromagnetic Bose-Hubbard insulator M. Zvonarev, T. Giamarchi, V. Cheianov Lancaster University University of Geneve M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  2. Spin-charge separation in a non-linear system Bosons with spin tend to form completely polarized ground states. In such states ubiquitous spin-charge separation does not occur because of non-linear dispersion relation ω ( k ) = ck 2 kinematic constraint ̺ ( x ) = s z ( x ) In this work we demonstrate how to separate spin and charge in a doped Bose-Hubbard insulator and calculate the propagator of transverse spin excitations. M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  3. Recent work on 1-d Bose-ferromagnets M. B. Zvonarev, V. V. Cheianov, and T. Giamarchi, Phys. Rev. Lett. 99, 240404 (2007) S. Akhanjee, Y. Tserkovnyak, Phys. Rev. B 76 140408 (2007) K. A. Matveev, A. Furusaki, arXiv:0808.0681 A. Kamenev, L.I. Glazman, arXiv:0808.0479 K. A. Matveev, A. Furusaki, and L. I. Glazman, Phys. Rev. B 76, 155440 (2007) M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  4. The spinor Bose-Hubbard model A system of spin s (for simplicity s = 1 / 2) Bose particles on a 1-d lattice with nearest neighbor hopping and on-site repulsion. ξ = hopping matrix element, U = repulsion strength M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  5. The Hamiltonian The Fock space is generated by Bose fields b σ, j , b † σ, j , where j = 1 , . . . , M and σ = ↑ , ↓ . The Hamiltonian is H = T + V where M � � [ b † j ,σ b j +1 ,σ + b † T = − ξ j +1 ,σ b j ,σ ] j =1 σ and M � V = U ̺ j ( ̺ j − 1) j =1 M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  6. Spinor BH insulator: ground state and excitations For integer filling factor ν and for large enough U the system is incompressible. For ν = 1 this happens if U > 4 . 3 ξ Ground state is ferromagnetic Excitations are transverse spin waves M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  7. Spinor BH insulator: low energy dynamics Low energy degrees of freedom s ( j ) = 1 2 b † � j ,λ � σ λµ b j ,µ , [ s α ( i ) , s λ ( j )] = i δ ij ǫ αλµ s α ( i ) For E ≪ U the dynamics is described by the Hamiltonian � H = − 2 J � s ( j ) · � s ( j + 1) j M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  8. Transverse spin propagator The evolution of spin in linear response theory is defined by G ⊥ ( j , t ) = �⇑ | s + ( j , t ) s − (0 , 0) | ⇑� For the Heisenberg Hamiltonian G ⊥ ( j , t ) = e − i π 2 j e 2 iJt J j (2 Jt ) where J j ( x ) is the Bessel function of the first kind. M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  9. Transverse spin propagator: properties Decays rapidly for j > 2 Jt Exhibits rapid oscillations as a function of j The dispersion relation ω ( k ) = 2 J (1 − cos k ) ⇒ the maximal group velocity v max = 2 J . M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  10. Spin Dynamics in the Doped BHI M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  11. The t - J approximation The Hamiltonian is H = T + U For U → ∞ multiple occupancy is excluded. Denote by P the projector onto the space of excluded multiple occupancy. Then to the second order in T / U P T | a �� a | T � H tJ = P T P − P E a a What are good variables? M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  12. Nested variables Spinless fermions c j , c † j + nested spin � ℓ ( m ) M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  13. The t - J Hamiltonian In nested variables H tJ = T + ξ 2 � Q j [ � ℓ ( N j ) + � ℓ ( N j + 1)] 2 2 U j =1 where � 2 π d λ � � � 2 π e − ı λ [ m −N j ] , � ℓ ( N j ) = N j = ℓ ( m ) ̺ i 0 m i ≤ j and Q j = c † j c † j − 1 c j +1 c j + c † j +2 c † j +1 c j +1 c j + 2 c † j +1 c † j c j +1 c j M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  14. Low doping In the limit 1 − ν ≪ 1 one can neglect fluctuations of charge ( c † � ℓ ( m ) · � � � H tJ = − ξ j c j +1 + h . c . ) − 2 J ℓ ( m + 1) m j where ξ 2 J = 2 π U (2 πν − sin 2 πν ) Surprisingly, this result is correct even in the limit ν → 0 . The Hamiltonian shows spin-charge separation! M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  15. Separation of variables Neglecting fluctuations of charge | ⇑� = | ⇑� spin ⊗ | FS � charge . H tJ = H spin + H charge and The local spin is s ( j ) = ̺ j � ℓ ( N j ) ≈ � � ℓ ( N j ) where � 2 π d λ � � � 2 π e − ı λ [ m −N j ] , � ℓ ( N j ) = ℓ ( m ) × N j = ̺ i 0 m i ≤ j M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  16. The spin correlation function The main result is � π d λ G ⊥ ( j , t ) = 2 π G H ( λ, t ) D ν ( λ ; j , t ) − π where G H ( λ, t ) = e − 2 iJt (1 − cos λ ) and D ν ( λ ; j , t ) = � FS | e i λ N j ( t ) e − i λ N 0 (0) | FS � M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  17. Determinant representation There exists a representation of D ν ( λ ; j , t ) = � FS | e i λ N j ( t ) e − i λ N 0 (0) | FS � in terms of a Fredholm determinant of an integrable kernel: V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, QISM and Correlation Functions, Cambridge University Press, (1993), F. Ghmann, A.G. Izergin, V.E. Korepin, A.G. Pronko, Int. J. Mod. Phys. B, 12 (1998) 2409; V.Cheianov and M. Zvonarev, J. Phys. A:Math. Gen. 37, 2261-2297 (2004) M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  18. Asymptotic Formulae In the region π (1 − ν ) j ≪ 1 and ξπ 2 (1 − ν ) 2 t ≪ 1 D ν ( λ ; j , t ) = 1 Outside this region | j 2 − v 2 F t 2 | − λ 2 e − 1 − γ 4 π 2 ln v 2 F t 2 D ν ( λ ; j , t ) = e i λ j e , t c = c 2 π 2 (1 − ν ) 2 ξ M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  19. Parametric regions M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  20. Region C: J /ξ ≪ π 2 (1 − ν ) 2 In this region there exists a time window ξπ 2 (1 − ν ) 2 ≪ t ≪ 1 1 2 J Inside this window ( π j )2 π � e − G ⊥ ( j , t ) = 2 ln t / tc 2 ln t / t c M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  21. Parametric regions M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  22. Region A: J /ξ ≫ π (1 − ν ) In this region and for 1 t ≫ π 2 (1 − ν ) 2 ξ the correlator is G ⊥ ( j , t ) = G H ( λ s , t ) D ν ( λ s , j , t ) λ s = arcsin j 2 √ π iJt cos λ s , 2 Jt This expression has a singularity at j = v F t , where v F = π (1 − ν ) is the sound velocity since D ν ( λ ; j , t ) ∝ e − λ 2 4 π 2 ln | j 2 − v 2 F t 2 | M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

  23. Conclusions We have demonstrated that by a proper choice of variables one can separate spin and charge in the doped Bose-Hubbard insulator Due to a non-local nature of the new variables there is no spin-charge separation in the local spin dynamics We found an explicit expression for the spin propagator in terms of a Fredholm Determinant. Depending on the parametric regime the spin propagator shows logarithmic diffusion of spin and light-cone singularities at j = v F t due to the spin-charge mixing in the long-distance limit. M. Zvonarev, T. Giamarchi, V. Cheianov Spin dynamics in a doped ferromagnetic Bose-Hubbard in

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend