strange metals from holography
play

Strange metals from holography David Vegh Simons Center for - PowerPoint PPT Presentation

Introduction Holographic non-Fermi liquids Charge transport Strange metals from holography David Vegh Simons Center for Geometry and Physics Hong Liu, John McGreevy, DV arXiv:0903.2477 Thomas Faulkner, Hong Liu, John McGreevy, DV


  1. Introduction Holographic non-Fermi liquids Charge transport Strange metals from holography David Vegh Simons Center for Geometry and Physics Hong Liu, John McGreevy, DV arXiv:0903.2477 Thomas Faulkner, Hong Liu, John McGreevy, DV arXiv:0907.2694 Thomas Faulkner, Gary Horowitz, John McGreevy, Matthew Roberts, DV arXiv:0911.3402 Thomas Faulkner, Nabil Iqbal, Hong Liu, John McGreevy, DV arXiv:1003.1728 and in progress (see also: Sung-Sik Lee, arXiv:0809.3402 ; Cubrovic, Zaanen, Schalm, arXiv:0904.1933) The Galileo Galilei Institute – September 29, 2010 David Vegh Strange metals from holography

  2. Introduction Holographic non-Fermi liquids Charge transport Introduction David Vegh Strange metals from holography

  3. Introduction Holographic non-Fermi liquids Charge transport Introduction Holographic non-Fermi liquids AdS 4 − BH geometry Fermi surfaces Near-horizon AdS 2 and emergent IR CFT David Vegh Strange metals from holography

  4. Introduction Holographic non-Fermi liquids Charge transport Introduction Holographic non-Fermi liquids AdS 4 − BH geometry Fermi surfaces Near-horizon AdS 2 and emergent IR CFT Charge transport Conductivity Summary David Vegh Strange metals from holography

  5. Introduction Holographic non-Fermi liquids Charge transport Fermions at finite density ◮ Landau Fermi liquid theory [Landau, 1957] [Abrikosov-Khalatnikov, 1963] stable RG fixed point [Polchinski, Shankar] (modulo BCS instability) [Benfatto-Gallivotti] ◮ (i) ∃ Fermi surface (ii) (weakly) interacting quasiparticles ⇒ thermodynamics, transport properties ◮ appear as poles in the single-particle Green’s function: x ) = i θ ( t ) · �{ ψ † ( t ,� x ) , ψ (0 ,� G R ( t ,� 0) }� µ, T Z G R ( ω,� k ⊥ ≡ | � Σ ∼ i ω 2 k ) = ω − v F k ⊥ − Σ+ . . . , k |− k F ⋆ k ⊥ → 0 ρ ( ω,� k ) ≡ Im G R ( ω,� k ) − → Z δ ( ω − v F k ⊥ ) with Z finite David Vegh Strange metals from holography

  6. Introduction Holographic non-Fermi liquids Charge transport Non-Fermi liquids do exist ◮ sharp Fermi surface still present � ◮ no long-lived quasiparticles × pole residue can vanish ◮ anomalous thermodynamic and transport properties Examples ◮ 1+1d Luttinger liquid: interacting fermions → free bosons ◮ Mott metal-insulator transition ◮ heavy fermion compounds ◮ high-temperature superconductors [M¨ uller, Bednorz, 1986] pseudogap, Fermi arcs and pockets, density waves optimally doped cuprates: ρ ∼ T Organizing principle for non-Fermi liquids? David Vegh Strange metals from holography

  7. Introduction AdS 4 − BH geometry Holographic non-Fermi liquids Fermi surfaces Charge transport Near-horizon AdS 2 and emergent IR CFT Strategy ◮ set up finite density state ◮ look for a Fermi surface ◮ study low-energy excitations near FS ◮ transport properties David Vegh Strange metals from holography

  8. Introduction AdS 4 − BH geometry Holographic non-Fermi liquids Fermi surfaces Charge transport Near-horizon AdS 2 and emergent IR CFT AdS 4 − BH geometry Relativistic CFT 3 with gravity dual and conserved U (1) global symmetry 1 d 4 x √− g � R + 6 R 2 − 1 � � 4 F µν F µν + . . . S = 2 κ 2 Charged black hole solution ds 2 = r 2 + R 2 dr 2 − f ( r ) dt 2 + d � x 2 � � R 2 f ( r ) r 2 f ( r ) = 1 + Q 2 r 4 − M 1 − r 0 � � A = µ dt r 3 r where µ = chemical potential, horizon at r = r 0 . David Vegh Strange metals from holography

  9. Introduction AdS 4 − BH geometry Holographic non-Fermi liquids Fermi surfaces Charge transport Near-horizon AdS 2 and emergent IR CFT Retarded spinor Green’s function Introduce ψ spinor field in the AdS − BH background d 4 x √− g � ¯ � ψ (/ � S probe = D − m ) ψ + interactions 4 ω ab µ Γ ab − iqA µ . with D µ = ∂ µ + 1 Universality: for two-point functions, the interaction terms do not matter. ∆ = 3 Results only depend on ( q , ∆) 2 ± mR Prescription [Henningson-Sfetsos] [M¨ uck-Viswanathan] [Son-Starinets] [Iqbal-Liu] ◮ Solve the Dirac equation for the bulk spinor in AdS − BH ◮ Impose infalling boundary conditions at the horizon ◮ Expand the solution at the boundary ψ = ( − gg rr ) − 1 / 4 e − i ω t + ikx Ψ Φ α = 1 2 (1 − ( − 1) α Γ r Γ t Γ x )Ψ � � � � 0 1 G α ( ω, k ) = b α r →∞ a α r m + b α r − m Φ α ≈ α = 1 , 2 1 0 a α David Vegh Strange metals from holography

  10. Introduction AdS 4 − BH geometry Holographic non-Fermi liquids Fermi surfaces Charge transport Near-horizon AdS 2 and emergent IR CFT Fermi surfaces At q = 1 , ∆ = 3 / 2 the numerical computation gives [Liu-McGreevy-DV] k = 0 . 9 k = 0 . 925 k F ≈ 0 . 9185284990530 ◮ Quasiparticle-like peaks for k < k F ω ∼ k z ⊥ with z ≈ 2 . 09 ◮ Bumps for k > k F ◮ Scaling behavior: G R ( λ k ⊥ , λ z ω ) = λ − α G R ( k ⊥ , ω ) with α = 1 ◮ non-Fermi liquid! David Vegh Strange metals from holography

  11. Introduction AdS 4 − BH geometry Holographic non-Fermi liquids Fermi surfaces Charge transport Near-horizon AdS 2 and emergent IR CFT Fermi surfaces dispersion from ‘photoemission’ results q = 1 . 0 k F = 0 . 53 q = 1 . 56 k F = 0 . 95 q = 2 . 0 k F = 1 . 32 David Vegh Strange metals from holography

  12. Introduction AdS 4 − BH geometry Holographic non-Fermi liquids Fermi surfaces Charge transport Near-horizon AdS 2 and emergent IR CFT Black hole geometry ds 2 = r 2 dr 2 f ( r ) = 1 + 3 r 4 − 4 − f ( r ) dt 2 + d � � x 2 � + R 2 R 2 f ( r ) r 2 r 3 ◮ Emergent “IR CFT” AdS 2 ⇔ “(0+1)-d CFT” ◮ At low frequencies, the parent theory is controlled by IR CFT. ◮ Each UV operator O is associated to a family of operators O � k in IR. ◮ Conformal dimensions in IR � 2 + k 2 − q 2 �� k = 1 1 ∆ − 3 G k ( ω ) = c ( k ) ω 2 ν k δ � 2 + ν � ν � k = √ k 6 2 2 David Vegh Strange metals from holography

  13. Introduction AdS 4 − BH geometry Holographic non-Fermi liquids Fermi surfaces Charge transport Near-horizon AdS 2 and emergent IR CFT Small ω expansion ◮ To understand scaling around FS, study low- ω behavior of correlators. ◮ Not straightforward: ω -dependent terms in DE are singular near the horizon. Strategy [Faulkner-Liu-McGreevy-DV] ◮ Separate spacetime into UV region and the AdS 2 × R 2 IR region. ◮ Perform small ω expansions separately. ◮ Match them at the overlapping region. Result � � b (0) + + ω b (1) + + O ( ω 2 ) + G k ( ω ) b (0) − + ω b (1) − + O ( ω 2 ) G R ( ω, k ) = � � a (0) + + ω a (1) a (0) − + ω a (1) + + O ( ω 2 ) + G k ( ω ) − + O ( ω 2 ) G k ( ω ) ∈ C retarded correlator for O � k in IR CFT a (0) ± , a (1) ± , b (0) ± , b (1) ± ∈ R are k -dependent functions (from UV region) David Vegh Strange metals from holography

  14. Introduction AdS 4 − BH geometry Holographic non-Fermi liquids Fermi surfaces Charge transport Near-horizon AdS 2 and emergent IR CFT Fermi surfaces � � b (0) + + ω b (1) + + O ( ω 2 ) + G k ( ω ) b (0) − + ω b (1) − + O ( ω 2 ) G R ( ω, k ) = � � a (0) + + ω a (1) a (0) − + ω a (1) + + O ( ω 2 ) + G k ( ω ) − + O ( ω 2 ) a (0) Suppose that for some k F : + ( k F ) = 0 Then, at small ω, k ⊥ we have h 1 G R ( k , ω ) = v F ω − h 2 G k F ( ω ) + . . . 1 k ⊥ − � m 2 + k 2 − q 2 G k ( ω ) = c ( k ) ω 2 ν k 1 ν � k = h 1 , h 2 , v F ∈ R √ 2 6 This is the quasiparticle peak we saw earlier. David Vegh Strange metals from holography

  15. Introduction AdS 4 − BH geometry Holographic non-Fermi liquids Fermi surfaces Charge transport Near-horizon AdS 2 and emergent IR CFT Fermi surfaces: singular and non-singular Suppose ν k < 1 2 h 1 G R ( k , ω ) = k ⊥ − h 2 G kF ( ω ) + . . . 1 − 2 ν kF 2 ν kF Γ( k ) ω ⋆ ( k ) ∼ k z 1 z = 2 ν kF > 1 ω ⋆ ( k ) = const Z ∼ k → 0 , k ⊥ → 0 ⊥ ⊥ Suppose ν k > 1 2 h 1 G R ( k , ω ) = 2 ν kF + . . . k ⊥ − 1 vF ω − h 2 c ( k F ) ω 2 ν kF − 1 Γ( k ) ω ⋆ ( k ) ∼ v F k ⊥ ω ⋆ ( k ) = k → 0 Z = h 1 v F ⊥ David Vegh Strange metals from holography

  16. Introduction AdS 4 − BH geometry Holographic non-Fermi liquids Fermi surfaces Charge transport Near-horizon AdS 2 and emergent IR CFT Fermi surfaces: Marginal Fermi liquid h 1 G R ( k , ω ) = v F ω − h 2 c ( k F ) ω 2 ν kF + . . . k ⊥ − 1 Suppose ν k = 1 2 v F goes to zero, c ( k F ) has a pole h 1 G R ( k , ω ) = k ⊥ + c 1 ω +˜ c 2 ω log ω + ic 2 ω where c ∈ R . This is the Marginal Fermi liquid Green’s function [Varma, 1989] David Vegh Strange metals from holography

  17. Introduction Conductivity Holographic non-Fermi liquids Summary Charge transport Charge transport ◮ Normal phase of optimally doped high- T c : ρ = ( σ DC ) − 1 ∼ T ◮ impurities: ρ ∼ const. ρ ∼ T 2 e-e scattering: e-phonon scattering: ρ ∼ T 5 ◮ Compute conductivity contribution of the holographic Fermi surfaces [Faulkner-Iqbal-Liu-McGreevy-DV] David Vegh Strange metals from holography

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend