3 2 classic differential geometry 2
play

3.2 Classic Differential Geometry 2 Hao Li http://cs599.hao-li.com - PowerPoint PPT Presentation

Spring 2015 CSCI 599: Digital Geometry Processing 3.2 Classic Differential Geometry 2 Hao Li http://cs599.hao-li.com 1 Outline Parametric Curves Parametric Surfaces 2 Surfaces What characterizes shape? shape does not depend on


  1. Spring 2015 CSCI 599: Digital Geometry Processing 3.2 Classic Differential Geometry 2 Hao Li http://cs599.hao-li.com 1

  2. Outline • Parametric Curves • Parametric Surfaces 2

  3. Surfaces What characterizes shape? � • shape does not depend on Euclidean motions • metric and curvatures • smooth continuous notions to discrete notions 3

  4. Metric on Surfaces Measure Stuff � • angle, length, area • requires an inner product • we have: • Euclidean inner product in domain • we want to turn this into: • inner product on surface 4

  5. Parametric Surfaces Continuous surface   x ( u, v ) y ( u, v ) x ( u, v ) =   z ( u, v ) n Normal vector x u x v p x u � x v n = ⇥ x u � x v ⇥ Assume regular parameterization x u � x v ⇥ = 0 normal exists 5

  6. Angles on Surface [ u ( t ) , v ( t )] Curve in uv-plane defines curve on the surface x ( u, v ) c ( t ) = x ( u ( t ) , v ( t )) Two curves and intersecting at � c 1 c 2 p • angle of intersection? n • two tangents and t 1 t 2 x u x v t i = α i x u + β i x v p c 2 � • compute inner product c 1 t T 1 t 2 = cos θ � t 1 � � t 2 � 6

  7. Angles on Surface [ u ( t ) , v ( t )] Curve in uv-plane defines curve on the surface x ( u, v ) c ( t ) = x ( u ( t ) , v ( t )) Two curves and intersecting at c 1 c 2 p 1 t 2 = ( α 1 x u + β 1 x v ) T ( α 2 x u + β 2 x v ) t T = α 1 α 2 x T u x u + ( α 1 β 2 + α 2 β 1 ) x T u x v + β 1 β 2 x T v x v � x T x T ⇥ � α 2 ⇥ u x u u x v = ( α 1 , β 1 ) x T x T β 2 u x v v x v 7

  8. First Fundamental Form First fundamental form � E ⇥ � x T x T ⇥ F u x u u x v I = := x T x T F G u x v v x v Defines inner product on tangent space ⇥ T ⇤� α 1 ⇥ � α 2 ⇥⌅ � α 1 � α 2 ⇥ I := β 1 β 2 β 1 β 2 , 8

  9. First Fundamental Form First fundamental form allows to measure � I (w.r.t. surface metric) t > 1 t 2 = h ( α 1 , β 1 ) , ( α 2 , β 2 ) i Angles d s 2 = � (d u, d v ) , (d u, d v ) ⇥ Length squared � infinitesimal � E d u 2 + 2 F d u d v + G d v 2 = length d A = ⌅ x u ⇤ x v ⌅ d u d v Area ⇥ u x v ) 2 d u d v x T u x u · x T v x v � ( x T = infinitesimal � Area � = EG � F 2 d u d v cross product → determinant with unit vectors → area 9

  10. Sphere Example Spherical parameterization   cos u sin v x ( u, v ) = sin u sin v ( u, v ) ∈ [0 , 2 π ) × [0 , π )  ,  cos v Tangent vectors     − sin u sin v cos u cos v cos u sin v x v ( u, v ) = sin u cos v x u ( u, v ) =     − sin v 0 First fundamental Form sin 2 v � ⇥ 0 I = 0 1 10

  11. Sphere Example Length of equator x ( t, π / 2) � 2 π � 2 π ⇥ E ( u t ) 2 + 2 Fu t v t + G ( v t ) 2 d t 1 d s = 0 0 � 2 π = sin v d t 0 = 2 π sin v = 2 π 11

  12. Sphere Example Area of a sphere � 2 π � 2 π � π � π ⇥ EG − F 2 d u d v 1 d A = 0 0 0 0 � 2 π � π = sin v d u d v 0 0 = 4 π 12

  13. Normal Curvature Tangent vector … t n x u x v p t t = cos φ x u ∥ x u ∥ + sin φ x v ∥ x v ∥ unit vector 13

  14. Normal Curvature … defines intersection plane, yielding curve c ( t ) normal curve n c ( t ) t p t = cos φ x u ∥ x u ∥ + sin φ x v ∥ x v ∥ 14

  15. Geometry of the Normal Gauss map � • normal at point � � � • consider curve in surface again • study its curvature at p • normal “tilts” along curve 15

  16. Normal Curvature κ n ( t ) Normal curvature is defined as curvature of the c ( t ) p ( t ) = x ( u, v ) normal curve at point With second fundamental form ⇤ ⌅ x T x T � ⇥ uu n uv n e f II = := f g x T x T uv n vv n normal curvature can be computed as ea 2 + 2 fab + gb 2 t T II ¯ ¯ t = a x u + b x v t κ n (¯ t ) = = Ea 2 + 2 Fab + Gb 2 t T I ¯ ¯ ¯ = ( a, b ) t t 16

  17. Surface Curvature(s) Principal curvatures � κ 1 = max κ n ( φ ) • Maximum curvature φ κ 2 = min φ κ n ( φ ) • Minimum curvature κ n ( φ ) = κ 1 cos 2 φ + κ 2 sin 2 φ • Euler theorem • Corresponding principal directions , are orthogonal e 1 e 2 17

  18. Surface Curvature(s) Principal curvatures � κ 1 = max κ n ( φ ) • Maximum curvature φ κ 2 = min φ κ n ( φ ) • Minimum curvature κ n ( φ ) = κ 1 cos 2 φ + κ 2 sin 2 φ • Euler theorem • Corresponding principal directions , are orthogonal e 1 e 2 Special curvatures � H = κ 1 + κ 2 • Mean curvature extrinsic 2 • Gaussian curvature K = κ 1 · κ 2 intrinsic (only first FF) 18

  19. Invariants Gaussian and mean curvature � • determinant and trace only � � � • eigenvalues and orthovectors 19

  20. Mean Curvature Integral representations 20

  21. Curvature of Surfaces H = κ 1 + κ 2 Mean curvature � 2 • everywhere minimal surface H = 0 → soap film 21

  22. Curvature of Surfaces H = κ 1 + κ 2 Mean curvature � 2 • everywhere minimal surface H = 0 → Green Void, Sydney Architects: Lava 22

  23. Curvature of Surfaces Gaussian curvature � K = κ 1 · κ 2 • everywhere developable surface K = 0 → surface that can be flattened to a plane without distortion (stretching or compression) Disney, Concert Hall, L.A. Timber Fabric Architects: Gehry Partners IBOIS, EPFL 23

  24. Shape Operator Derivative of Gauss map � • second fundamental form � � � • local coordinates 24

  25. Intrinsic Geometry Properties of the surface that only depend on the � first fundamental form � • length • angles • Gaussian curvature (Theorema Egregium) remarkable theorem (Gauss) 6 π r − 3 C ( r ) K = lim π r 3 r → 0 Gaussian curvature of a surface is invariant under local isometry 25

  26. Classification Point on the surface is called � x • elliptic, if K > 0 • hyperbolic, if K < 0 Gaussian curvature K • parabolic, if K = 0 • umbilic, if κ 1 = κ 2 or isotropic 26

  27. Classification Point on the surface is called x 27

  28. Gauss-Bonnet Theorem For any closed manifold surface with Euler χ = 2 − 2 g characteristic Z K = 2 πχ Z Z Z K ( ) = K ( ) = K ( ) = 4 π 28

  29. Gauss-Bonnet Theorem Sphere κ 1 = κ 2 = 1 /r K = κ 1 κ 2 = 1 /r 2 Z K = 4 π r 2 · 1 r 2 = 4 π when sphere is deformed, new positive and negative curvature cancel out 29

  30. Differential Operators Gradient � ✓ ∂ f ◆ , . . . , ∂ f r f := � ∂ x 1 ∂ x n � • points in the direction of the steepest ascend 30

  31. Differential Operators Divergence � � div F = r · F := ∂ F 1 + . . . + ∂ F n ∂ x 1 ∂ x n � • volume density of outward flux of vector field • magnitude of source or sink at given point • Example: incompressible fluid • velocity field is divergence-free 31

  32. Differential Operators Divergence div F = r · F := ∂ F 1 + . . . + ∂ F n ∂ x 1 ∂ x n high divergence low divergence 32

  33. Laplace Operator gradient 2nd partial Laplace operator derivatives operator ∂ 2 f � ∆ f = div ∇ f = ∂ x 2 i i Cartesian coordinates function in divergence Euclidean space operator 33

  34. Laplace-Beltrami Operator Extension of Laplace fo functions on manifolds Laplace- gradient Beltrami operator …of the surface ∆ S f = div S ∇ S f function on divergence S manifold operator Laplace on the surface 34

  35. Laplace-Beltrami Operator Laplace- gradient Beltrami operator mean curvature ∆ S x = div S ∇ S x = − 2 H n surface function on normal divergence S manifold operator 35

  36. Literature • M. Do Carmo: Differential Geometry of Curves and Surfaces, Prentice Hall , 1976 • A. Pressley: Elementary Differential Geometry , Springer, 2010 • G. Farin: Curves and Surfaces for CAGD , Morgan Kaufmann, 2001 • W. Boehm, H. Prautzsch: Geometric Concepts for Geometric Design , AK Peters 1994 • H. Prautzsch, W. Boehm, M. Paluszny: Bézier and B-Spline Techniques , Springer 2002 • ddg.cs.columbia.edu • http://graphics.stanford.edu/courses/cs468-13-spring/schedule.html 36

  37. Next Time Discrete Differential Geometry 37

  38. http://cs599.hao-li.com Thanks! 38

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend