status and prospects for vuv ellipsometry applied to high
play

Status and Prospects for VUV Ellipsometry (applied to high-k and - PowerPoint PPT Presentation

Status and Prospects for VUV Ellipsometry (applied to high-k and low-k materials) N.V. Edwards Advanced Products Research and Development Laboratory Semiconductor Products Sector, Motorola, Inc. Requires invention/ potential showstopper


  1. Status and Prospects for VUV Ellipsometry (applied to high-k and low-k materials) N.V. Edwards Advanced Products Research and Development Laboratory Semiconductor Products Sector, Motorola, Inc.

  2. Requires invention/ potential showstopper Development required Solution known

  3. Outline Quick Introduction to Ellipsometry 1 • Why do we need the VUV? VUV SE: Initial Challenges 2 • Instrumentation and analysis Applications and Advantages of VUV SE 3 • Increased sensitivity to film thickness • Increased access to unique spectral features VUV SE of High- k Materials 4 • Thickness, bandgap, interface layer VUV SE of Low -k Materials 5 • Porosity, low index inclusions 6 Conclusion

  4. 1 Introduction: What is ellipsometry? • Traditional SE can be static or dynamic, 1770 to 190 nm – In-line metrology (thickness, index) – Material diagnostics (band gap, alloy composition, strain) – Optical constants (index of refraction, dielectric constant) – Control/ monitoring of, e.g, • Semiconductor growth • Etching • Deposition of proteins on semiconductors

  5. 1 Introduction: What is ellipsometry? • Traditional SE can be static or dynamic, 1770 to 190 nm – In-line metrology (thickness, index) – Material diagnostics (band gap, alloy composition, strain) – Optical constants (index of refraction, dielectric constant) – Control/ monitoring of, e.g, • Semiconductor growth • Etching • Deposition of proteins on semiconductors VUV: <190 nm or > 6.5 eV

  6. 1 Introduction: What is ellipsometry? • Why do we need VUV? – Lithography • 157 nm • EUV – Front end processing • Thin high k films – Back end processing • Porous low –k interlayer dielectrics Potential applications for analyzing any “transparent” dielectric and wideband gap semiconductor

  7. 1 Introduction: What is ellipsometry? Detector ϕ Source Exit Entrance Optics Optics χ i χ f Sample χ f / χ i → ρ

  8. 1 Introduction Real and imaginary part of dielectric function, ε = ε 1 + i ε 2 ρ Optical Real(Dielectric Constant), ε 1 4.0 2.5 Imag(Dielectric Constant), ε 2 ε 1 ε 1 HfO 2 ε Constants ε 2 2 3.5 2.0 3.0 1.5 2.5 1.0 2.0 0.5 Index of refraction n , 1.5 0.0 Extinction coefficient k, 0 2 4 6 8 10 Photon Energy (eV) n = n + i k 2.8 0.60 Index of refraction ’n’ Al 2 O 3 Extinction Coefficient ‘ K ’ n   ( ) 1 1 k  +  2 2 2 2.4 0.40 n σ = ε 2 + 1 1      νε  2   2.0 0.20   ( ) 1 1  +  2 2 2 k σ = ε 2 − 1 1      νε  2   1.6 0 0 300 600 900 1200 1500 1800 W avelength (nm )

  9. 2 Challenges: Instrumentation Measurements made: • in air (any transparent medium will do) Quartz and air • with quartz optical elements absorb below 190nm

  10. 2 Challenges: Instrumentation The world’s first VUV ellipsometer at the BESSY-I synchrotron source but not quite appropriate for industrial use……..

  11. Challenges: Instrumentation 2 Xenon → Deuterium quartz → MgF 2 Spectral Range: 131 to 1770nm or 0.7 to 9.5 eV Available A.O.I. = 20° to 80° Compensator for high accuracy measurements of transparent region However, reducing data to optical constants still was not routine

  12. 2 Challenges: Data Reduction for VUV SE Detector ϕ Source Exit Entrance Optics Optics χ i χ f Sample χ→ρ→ε 131 to 1770 nm Experimental Data 80 300 Sample Properties: Exp Ψ -E 65° ∆ -E 65° Exp 60 200 d , n, k, ε ∆ in degrees Ψ in degrees composition 40 100 Model roughness bandgap 20 0 porosity 0 -100 0 2 4 6 8 10 Photon Energy (eV)

  13. 2 Challenges: Data Reduction χ i χ f ambient ε a 2-phase model: substrate ε s 2  − ρ  1 = ϕ + ϕ ϕ 2 2 2   ε sin sin tan s + ρ 1   3-phase model: ambient ε a * d � } < ε > overlayer ε o substrate ε s ( )( ) ε ε ε ε ε ε n   π − − 4 id 2 a s s o o a  s  ε ( ) sin ε = + − ϕ s ε ε ε ε   λ −   o s a a

  14. 2 Challenges : Data Reduction * Model assumes mathematically sharp interfaces * Information is returned over the penetration depth of light in the heterostructure (penetration depth is a function of λ ) } overlayer ε o substrate ε s ε s * Must account for: • Inorganic/ organic contamination Significant for VUV SE } • Roughness of high and low k films • Interface layers

  15. 2 Challenges : Data Reduction ε s : Substrate is foundational; ε s Substrate = Si Fitting up to DUV is routine; Si optical constants are well known: Aspnes, Herzinger Jellison, Yasuda No optical constants for Si in VUV Si OSG

  16. 2 Challenges: Data Reduction Can’t we just extrapolate optical constants? Big problems 0.70 Model Fit Exp pR 40° 0.60 0.50 Reflection 0.40 Reflectivity data 0.30 Model fit (with extrapolated optical constants) 0.20 0 2 4 6 8 10 Photon Energy (eV) No! Need to determine VUV optical constants Si for Si. Approach: • 9 thermal oxide samples grown on Si, OSG from ~8 Å to 2200 Å thick • multiple angle of incidence (45 to 75°) • multi-sample analysis

  17. 2 Challenges: Data Reduction • interface layer of 9.4 Å for all samples • fit parameters coupled in interface and SiO 2 layers, except for Amp, E1 offset • could NOT fit data without interface layer SiO 2 : Tauc-Lorentz oscillator Amp= 40.024 , En= 10.643, C= 0.72608, Eg= 7.5258 Pole 1: Pos= 13.167, Mag= 94.386 Pole 2: Pos= 0.135, Mag= 0.0127 E1 offset= 1.263 Interface Layer: Tauc-Lorentz oscillator Amp= 158.67 , En= 10.643, C= 0.72608, Eg= 7.5258 Interface Layer Pole 1: Pos= 13.167, Mag= 94.386 Pole 2: Pos= 0.135, Mag= 0.0127 Si: Parameterized Semiconductor Layer E1 offset= 1.5705

  18. 2 Challenges: Data Reduction • interface layer of 9.4 Å for all samples • fit parameters coupled in interface and SiO 2 layers, except for Amp, E1 offset • could NOT fit data without interface layer Multi-Sample Analysis SiO 2 : Tauc-Lorentz oscillator Amp= 40.024 , En= 10.643, C= 0.72608, Eg= 7.5258 Pole 1: Pos= 13.167, Mag= 94.386 Pole 2: Pos= 0.135, Mag= 0.0127 E1 offset= 1.263 Interface Layer: Tauc-Lorentz oscillator Amp= 158.67 , En= 10.643, C= 0.72608, Eg= 7.5258 Interface Layer Pole 1: Pos= 13.167, Mag= 94.386 Pole 2: Pos= 0.135, Mag= 0.0127 Si: Parameterized Semiconductor Layer E1 offset= 1.5705

  19. SiO 2 /Si: Selected Fits from Multi-Sample Analysis Challenges: 2 Fig. 1 a 40 40 Data Reduction Data: ε 1 , blue 30 ε 2 , green 30 Model: red 20 Thinnest Sample: < ε 2 > < ε 1 > 10 20 SiO2 7.5 Å 0 10 Int. Layer 9.4 Å -10 Si Substrate -20 0 0 2 4 6 8 10 Photon Energy (eV) Fig. 1 b 100 300 80 200 ∆ in degrees Ψ in degrees 60 Thickest Sample: 100 SiO2 2189.3 Å 40 0 Int. Layer 9.4 Å 20 0 -100 Si Substrate 0 2 4 6 8 10 Photon Energy (eV)

  20. 2 Challenges: Data Reduction X 1C X 1V 2.8 Si Optical Constants New CP: X 1v -X 1C transition < ε 1 > 2.3 50 pseudodielectric function New Critical Point: X 1v -X 1C transition 30 1.8 < ε 2 > 7.2 7.7 8.2 < ε 1 > 10 Motorola Aspnes -10 Herzinger Jellison -30 Yasuda 0 2 4 6 8 10 energy in eV

  21. 2 Challenges: 2.00 Data Reduction Index of refraction n 1.90 1.80 SiO 2 Optical Constants 1.70 1.60 Don’t extrapolate 1.50 optical constants! 1.40 This work 0 2 4 6 8 10 Palik, et al. Photon Energy (eV) Herzinger, et al. 0.060 Extinction Coefficient k 0.050 0.040 0.030 0.020 0.010 0.000 0 2 4 6 8 10 Photon Energy (eV)

  22. 2 Challenges: 2.00 Data Reduction Index of refraction n 1.90 1.80 SiO 2 Optical Constants 1.70 1.60 Don’t extrapolate 1.50 optical constants! 1.40 This work n w 0 2 4 6 8 10 o n k n Palik, et al. Photon Energy (eV) o i t u l o S Herzinger, et al. 0.060 Extinction Coefficient k 0.050 0.040 0.030 0.020 0.010 0.000 0 2 4 6 8 10 Photon Energy (eV)

  23. 3 Applications and Advantages of VUV SE 1. Optical Constants from VUV SE 3. Achieved: ARC n and k from 131 to 1770 nm design and experimental 2.00 0.060 verification for 1.90 0.050 Extinction Coefficient ' k ' improved contrast Index of refraction ' n ' 1.80 0.040 at desired inspection 1.70 0.030 wavelengths 1.60 0.020 1.50 0.010 1.40 0.000 0 300 600 900 1200 1500 1800 Wavelength (nm) ] % 2. Reflectivity/ W [ y a heterostructure t v i e v l e i design t n c g e t simulation h l f e [ n R m ] Thickness[Å] Litho applications are numerous and obvious….

  24. 3 Applications and Advantages of VUV SE 2.8 Si 2.3 50 pseudodielectric function 30 1.8 7.2 7.7 8.2 10 -10 -30 0 2 4 6 8 10 energy in eV SiO 2

  25. 3 Applications and Advantages of VUV SE 2.8 Si 2.3 50 pseudodielectric function 30 1.8 7.2 7.7 8.2 10 -10 -30 0 2 4 6 8 10 energy in eV SiO 2 High- k Low-k Gates ILDs SiO 2 SiO 2 SiON TEOS Metal oxides OSGs • Increased sensitivity to film thickness • Increased access to unique spectral features

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend