statistical modelling under epistemic data imprecision
play

Statistical Modelling under Epistemic Data Imprecision Some Results - PowerPoint PPT Presentation

Statistical Modelling under Epistemic Data Imprecision Some Results on Estimating Multinomial Distributions and Logistic Regression for Coarse Categorical Data Julia Plass*, Thomas Augustin*, Marco Cattaneo**, Georg Schollmeyer* *Department of


  1. Statistical Modelling under Epistemic Data Imprecision Some Results on Estimating Multinomial Distributions and Logistic Regression for Coarse Categorical Data Julia Plass*, Thomas Augustin*, Marco Cattaneo**, Georg Schollmeyer* *Department of Statistics, Ludwigs-Maximilians University and **Department of Mathematics, University of Hull & 21 st of July 2015 1 / 8

  2. Our working group 2 / 8

  3. Our working group Julia Plass research interests: Georg Schollmeyer Marco Cattaneo survey statistics Talk on Thursday Thomas Augustin University of Hull deficient data 2 / 8

  4. Epistemic vs. ontic interpretation (Couso, Dubois, S´ anchez, 2014) Epistemic imprecision: Ontic imprecision: “Imprecise observation of “Precise observation of something precise” something imprecise” OBSERVABLE LATENT or Coarsening or or = or = or = or or = ⇒ Truth is hidden due to the underlying ⇒ Truth is represented by coarse coarsening mechanism observation 3 / 8

  5. Examples of data under epistemic imprecision Epistemic imprecision: Examples: Matched data sets “Imprecise observation of with partially something precise” overlapping variables Coarsening as OBSERVABLE LATENT anonymization technique or Missing data as Coarsening or special case or = or or = Here: PASS-data Ω Y = { <, ≥ , na } ⇒ Truth is hidden due to the underlying “ < 1000”, “ ≥ 1000” and “ < 1000 e or ≥ 1000 e ”(na) coarsening mechanism 4 / 8

  6. Already existing approaches Still common to enforce Relative bias of π ^ A if CAR is assumed ( π A =0.6) 0.9 precise results 0.8 abs. value coarsening param. 2 0.7 0.6 ⇒ Biased results: 0.6 0.4 0.2 0.5 0.4 sign 0.3 − + 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 coarsening param. 1 Variety of set-valued approaches via random sets using Bayesian approaches (e.g. Nguyen, 2006) (de Cooman, Zaffalon, 2004) via likelihood-based belief via profile likelihood function (Denœux, 2014) (Cattaneo, Wiencierz, 2012) Here: Likelihood-based approach influenced by methodology of partial identification (Manski, 2003) coarse categorical data only 5 / 8

  7. Basic idea for the i.i.d. case (regression cf. poster) OBSERVABLE LATENT Observation model Q Y latent variable Y coarse data error-freeness Main goal: coarsening mechanism Estimation of π ij = P ( Y i = j ) p Y i = P ( Y i = Y i ) , i = 1 , . . . , n q Y | y = P ( Y = Y | Y = y ) π i 1 = π 1 , . . . , π iK = π K Use the connection between p and γ Use random-set perspective and determine γ = ( q T Y | y , π T y ) T Φ( γ ) = p ˆ maximum-likelihood estimator p Y Likelihood for parameters p = ( p 1 , . . . , p | Ω Y |− 1 ) T n Y � Y ∈ Ω Y p and the invariance of the likelihood L ( p ) ∝ is uniquely maximized by Y � n { y } under parameter transformations, i.e.: � Y ∋ y n Y � π y ∈ ˆ p Y = n Y n , ˆ n , Y ∈ { 1 , . . ., | Ω Y | − 1 } n ˆ � � n Y p | Ω Y | = 1 − � | Ω Y |− 1 q Y | y ∈ ˆ 0 , Γ = { γ | Φ( γ ) = ˆ p } and thus ˆ p m . ˆ n { y } + n Y m =1 6 / 8

  8. Basic idea for the i.i.d. case (regression cf. poster) OBSERVABLE LATENT Observation model Q Y latent variable Y coarse data error-freeness Main goal: coarsening mechanism Estimation of π ij = P ( Y i = j ) p Y i = P ( Y i = Y i ) , i = 1 , . . . , n q Y | y = P ( Y = Y | Y = y ) π i 1 = π 1 , . . . , π iK = π K Use the connection between p and γ Use random-set perspective and determine γ = ( q T Y | y , π T y ) T Φ( γ ) = p p Y ˆ maximum-likelihood estimator Likelihood for parameters p = ( p 1 , . . . , p | Ω Y |− 1 ) T n Y � Y ∈ Ω Y p is uniquely maximized by and the invariance of the likelihood L ( p ) ∝ Y � n { y } under parameter transformations, i.e.: � Y ∋ y n Y � p Y = n Y π y ∈ ˆ n , ˆ n , Y ∈ { 1 , . . ., | Ω Y | − 1 } n ˆ � n Y � p | Ω Y | = 1 − � | Ω Y |− 1 Γ = { γ | Φ( γ ) = ˆ q Y | y ∈ ˆ 0 , and thus ˆ p m . ˆ p } n { y } + n Y m =1 6 / 8

  9. Basic idea for the i.i.d. case (regression cf. poster) OBSERVABLE LATENT Observation model Q Y latent variable Y coarse data error-freeness Main goal: coarsening mechanism Estimation of π ij = P ( Y i = j ) p Y i = P ( Y i = Y i ) , i = 1 , . . . , n q Y | y = P ( Y = Y | Y = y ) π i 1 = π 1 , . . . , π iK = π K Use the connection between p and γ Use random-set perspective and determine γ = ( q T Y | y , π T y ) T Φ( γ ) = p ˆ p Y maximum-likelihood estimator Likelihood for parameters p = ( p 1 , . . . , p | Ω Y |− 1 ) T n Y � L ( p ) ∝ Y ∈ Ω Y p is uniquely maximized by and the invariance of the likelihood Y � n { y } under parameter transformations, i.e.: � Y ∋ y n Y � p Y = n Y π y ∈ ˆ n , ˆ Y ∈ { 1 , . . ., | Ω Y | − 1 } n , n ˆ � n Y � p | Ω Y | = 1 − � | Ω Y |− 1 Γ = { γ | Φ( γ ) = ˆ p } q Y | y ∈ ˆ 0 , and thus ˆ p m . ˆ n { y } + n Y m =1 6 / 8

  10. Basic idea for the i.i.d. case (regression cf. poster) OBSERVABLE LATENT Observation model Q Y latent variable coarse data Y error-freeness Main goal: coarsening mechanism Estimation of π ij = P ( Y i = j ) p Y i = P ( Y i = Y i ) , i = 1 , . . . , n q Y | y = P ( Y = Y | Y = y ) π i 1 = π 1 , . . . , π iK = π K Use the connection between p and γ Use random-set perspective and determine γ = ( q T Y | y , π T y ) T Φ( γ ) = p p Y ˆ maximum-likelihood estimator Likelihood for parameters p = ( p 1 , . . . , p | Ω Y |− 1 ) T n Y � Y ∈ Ω Y p and the invariance of the likelihood L ( p ) ∝ is uniquely maximized by Y � n { y } under parameter transformations, i.e.: � Y ∋ y n Y � p Y = n Y π y ∈ ˆ n , ˆ n , Y ∈ { 1 , . . ., | Ω Y | − 1 } n ˆ � � n Y p | Ω Y | = 1 − � | Ω Y |− 1 q Y | y ∈ ˆ 0 , and thus ˆ p m . ˆ Γ = { γ | Φ( γ ) = ˆ p } n { y } + n Y m =1 6 / 8

  11. Basic idea for the i.i.d. case (regression cf. poster) OBSERVABLE LATENT Observation model Q Y latent variable Y coarse data error-freeness Main goal: coarsening mechanism Estimation of π ij = P ( Y i = j ) p Y i = P ( Y i = Y i ) , i = 1 , . . . , n q Y | y = P ( Y = Y | Y = y ) π i 1 = π 1 , . . . , π iK = π K Use the connection between p and γ Use random-set perspective and determine γ = ( q T Y | y , π T y ) T Φ( γ ) = p ˆ p Y maximum-likelihood estimator Likelihood for parameters p = ( p 1 , . . . , p | Ω Y |− 1 ) T n Y � Y ∈ Ω Y p and the invariance of the likelihood L ( p ) ∝ is uniquely maximized by Y � n { y } under parameter transformations, i.e.: � Y ∋ y n Y � p Y = n Y π y ∈ ˆ n , ˆ n , Y ∈ { 1 , . . ., | Ω Y | − 1 } n ˆ � � n Y p | Ω Y | = 1 − � | Ω Y |− 1 q Y | y ∈ ˆ 0 , and thus ˆ p m . ˆ Γ = { γ | Φ( γ ) = ˆ p } n { y } + n Y m =1 6 / 8

  12. Basic idea for the i.i.d. case (regression cf. poster) OBSERVABLE LATENT Observation model Q Y latent variable coarse data Y error-freeness Main goal: coarsening mechanism Estimation of π ij = P ( Y i = j ) p Y i = P ( Y i = Y i ) , i = 1 , . . . , n q Y | y = P ( Y = Y | Y = y ) π i 1 = π 1 , . . . , π iK = π K Use the connection between p and γ Use random-set perspective and determine γ = ( q T Y | y , π T y ) T Φ( γ ) = p p Y ˆ maximum-likelihood estimator Likelihood for parameters p = ( p 1 , . . . , p | Ω Y |− 1 ) T n Y � Y ∈ Ω Y p and the invariance of the likelihood L ( p ) ∝ is uniquely maximized by Y � n { y } under parameter transformations, i.e.: � Y ∋ y n Y � π y ∈ ˆ p Y = n Y n , ˆ Y ∈ { 1 , . . ., | Ω Y | − 1 } n , n ˆ � � n Y p | Ω Y | = 1 − � | Ω Y |− 1 Γ = { γ | Φ( γ ) = ˆ p } q Y | y ∈ ˆ 0 , and thus ˆ p m . ˆ n { y } + n Y m =1 6 / 8

  13. Basic idea for the i.i.d. case (regression cf. poster) OBSERVABLE LATENT Observation model Q Y latent variable coarse data Y error-freeness Main goal: coarsening mechanism Estimation of π ij = P ( Y i = j ) p Y i = P ( Y i = Y i ) , i = 1 , . . . , n q Y | y = P ( Y = Y | Y = y ) π i 1 = π 1 , . . . , π iK = π K Use the connection between p and γ Use random-set perspective and determine γ = ( q T Y | y , π T y ) T Φ( γ ) = p ˆ p Y maximum-likelihood estimator Likelihood for parameters p = ( p 1 , . . . , p | Ω Y |− 1 ) T n Y � Y ∈ Ω Y p L ( p ) ∝ is uniquely maximized by and the invariance of the likelihood Y � n { y } under parameter transformations, i.e.: � Y ∋ y n Y � p Y = n Y ˆ π y ∈ n , ˆ n , Y ∈ { 1 , . . ., | Ω Y | − 1 } n ˆ � n Y � p | Ω Y | = 1 − � | Ω Y |− 1 q Y | y ∈ ˆ 0 , and thus ˆ ˆ p m . Γ = { γ | Φ( γ ) = ˆ p } n { y } + n Y m =1 Illustration (PASS data) n < = 238 , n ≥ = 835 , n na = 338 � 238 ˆ π < ∈ 238+338 � 1411 , 1411 6 / 8

  14. Reliable incorporation of auxiliary information Starting from point-identifying assumptions, we use sensitivity parameters to allow inclusion of partial knowledge. Assumption about exact value 1 q na |≥ of R = q na | < (Nordheim, 1984): e.g. Q specified by R=1 , R=4 na |≥ where R=1 corresponds to CAR (Heitjan, Rubin, 1991). q 0 1 q na | < 7 / 8

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend