measuring uncertainty with imprecision indices
play

Measuring Uncertainty with Imprecision Indices Andrey Bronevich, - PowerPoint PPT Presentation

Measuring Uncertainty with Imprecision Indices Andrey Bronevich, Alexander Lepskiy Technological Institute of Southern Federal University, Taganrog, RUSSIA Various types of uncertainty Randomness (probability theory); Nonspecificity


  1. Measuring Uncertainty with Imprecision Indices Andrey Bronevich, Alexander Lepskiy Technological Institute of Southern Federal University, Taganrog, RUSSIA

  2. Various types of uncertainty � Randomness (probability theory); � Nonspecificity (possibility theory); � Imprecision (interval calculi, monotone measure); � Inconsistency; � Incompleteness; � Fuzziness; and so on …

  3. Classical uncertainty measures � Shannon’s entropy (uncertainty – randomness) = − ∑ ( ) ( ) S P ( ) P { } log x P { } x 2 x X ∈ � Hartley’s measure (uncertainty – nonspecificity) ⎧ 1, B A , ⊆ = ⎨ H ( ) log B , ( ) A η = η 2 � B B 0, B A . ⎩

  4. Main attributions of particular theory of uncertainty (by G. Klir) � An uncertainty function g (ex. probability); � A calculus with functions g ; � A functional (uncertainty measures) f which measures the amount of uncertainty associated with g (ex. Shannon’s entropy); � A methodology.

  5. Generalized Hartley’s measure = ∑ g m B η ( ) , Let g be a belief function: X B B 2 ∈ ∑ m ∅ = ( ) 0, m B ≥ ( ) 0, m B ( ) 1. where = X B 2 ∈ = ∑ ( ) Then GH g m B ( )log B . 2 X B 2 \{ } ∈ ∅

  6. Aggregate measure of uncertainty ( ) Au g sup ( ) S P = P g ≥ Au P ( ) S P ( ), = Properties: 1) Au ( ) H ( ). 2) η = η B B

  7. Basic notations X � M is the set of all set functions on 2 ; { } � M g M g | ( ) 0 ; = ∈ ∅ = 0 { } � M = g M | g X ( ) 1, g be monotone measure ; ∈ = mon 0 � M is the set of all probability measures; Pr { } � M g M | P M : g P , = ∈ ∃ ∈ ≤ low mon Pr { } � M g M | P M : g P ; = ∈ ∃ ∈ ≥ up mon Pr � M , M are the sets of all belief and plausibility bel pl functions.

  8. Principal motivation g M P M Pr : g P g ∈ ∃ ∈ ≤ ≤ If then where low g A ( ) g X ( ) g A ( ) . = − g Therefore, the “distance” between g and defines the degree of uncertainty.

  9. Imprecision indices Let M M or M M . = = low up Definition . A functional : f M [0,1] is called → imprecision index if : 1) g M implies ( ) f g 0; ∈ = Pr 2) if g g then ( f g ) f g ( ) for M M ≤ ≥ = 1 2 1 2 low ( ) f g ( ) f g ( ) for M M ; ≤ = 1 2 up ( ) ( ) ( ) 3) f 1 for M M f 1 for M M ; η = = η = = low up X X is called linear imprecision index ( f I M ( )) if extra ∈ ( ) ∑ ∑ k k ( ) 4) f g f g . α = α j j j j j 1 j 1 = =

  10. Canonical representations of linear imprecision indices ∑ ⇒ g m ( ) B f g ( ) is defined by = η g X B B 2 ∈ ( ) f ( ) B η = µ f B Then ( ) B M , ({ }) x 0 x X . µ ∈ µ = ∀ ∈ f mon f ∑ A B \ g Let m ( ) B ( 1) g A ( ) = − A B : A ⊆ be dual Mobius transform. Proposition. Let be a linear functional on f M ∑ µ then ( ) f g m ( ) ( ) for any B g B g M . = f ∈ X B 2 ∈

  11. µ …through description of Möbius transform of f Theorem . Let be a linear functional on f M . ∑ µ µ a) m ( X ) 1 ; m ( D ) 0; f = f = X D 2 ∈ ∑ µ f I M ( ) b) m ( D ) 0 for all x X ; ∈ ⇔ = ∈ f low D x D : ∈ µ X c) m ( D ) 0 D 2 \{ , X }. ≤ ∀ ∈ ∅ f Corollary ("avoiding sure loss" condition). ∑ f I M ( ) f g ( ) 1 m B g B ( ) ( ), ∈ ⇔ = − low X B 2 ∈ X where: 1) ( m ) m X ( ) 0, ( ) m B 0 B 2 ; ∅ = = ≥ ∀ ∈ ∑ 2) m B ( )1 1 . = B X X B 2 ∈

  12. µ …through description of (monotone measure) f Theorem . f I M ( ) a b , ∈ ⇔ µ = µ − η low f X where b 0 , a 1 b , M and with > = + µ ∈ pl ( ) { } x b a / for all x X . µ = ∈ ∑ Corollary . If m A ( ) then µ = η f X A A 2 \{ } ∈ ∅ 1) M ( X ); µ ∈ f 0 ( ) 2 ) { } x 0 x X ; µ = ∀ ∈ f f I M ( ) ∈ ⇔ X low 3) ( ) m A 0 A 2 \{ , X }; ≥ ∀ ∈ ∅ ( ) or 3 ) B { } x M x X . ′ µ ∪ ∈ ∀ ∈ f Pl

  13. µ …through description of distorted function of f Theorem . Let be a linear functional on f M and ( ) { } � P and P x 1/ N , i 1,..., N . Then µ = λ = = f i ( ) a) 1/ N 0; λ = ) ⎡ 1 ∞ f I M ( ) b) C ,1 ; ∈ ⇐ λ ∈ ⎣ N n 1 ) − ⎡ ( ) n n 1 c) 1 d ( ) t dt 0, n � , t ,1 . − λ ≥ ∀ ∈ ∈ ⎣ N ( ) ( ) ⇒ Ex. ( ) t ln t X ln X λ = ( ) ( ) ⇒ ( ) A ln A ln X GH I M ( ). µ = ∈ GH low

  14. The algebraic structure of the set of linear imprecision indices { } Let M : f I M ( ) . = µ ∈ I f low ∑ Theorem . Let M , m A ( ) b , µ ∈ µ = η − η I X A X A 2 \{ , X } ∈ ∅ X for all A 2 \{ , X }, b 0, then is an extreme point ∈ ∅ > µ { } of M 1 are linearly independent. ⇔ m A ( ) 0, > I A X A 2 \{ , X } ∈ ∅

  15. The algebraic structure of the set of complementarily symmetrical imprecision indices Definition . We call f I M ( ) complementarily ∈ low µ µ X symmetrical if m ( ) A m ( ) A A 2 \{ , X }. f = f ∀ ∈ ∅ Ex . Let ( ) g g X ( ) g B ( ) g B ( ) g ( ) be primitive ν = − − + ∅ B imprecision index. Then ⇒ { } ( ) A ( ) A ( ) A ( ) A (such as 1 ,1 µ = η + η − η v B B X B B B ⇒ ⇒ a re linearly independent) extreme point ν − B Theorem . Let be complementarily symmetrical f ⇔ ∑ ∑ f ( ) B v , ( ) B 1, ( ) B 0 B . = α α = α ≥ ∀ B B B

  16. The extension of imprecision indices to the set M M ∪ low up Let ( ) f g f g ( ). = Proposition . f I M ( ) f I M ( ). ∈ ⇔ ∈ low up Proposition . Let be a linear functional on f M then f I M ( M ) is f ∈ ∪ ⇔ low up complementarily symmetrical index on M . low

  17. The extension of imprecision indices to the set M of all monotone measures mon uncertainty= imprecision inconsistency ∪ Let f I M ( ), g M but g M then ∈ ∈ ∉ low mon low f ( ) g inf f q ( ) is the amount of imprecision in g. = Imp q M | q g ∈ ≤ low ⇒ If g M then f ( ) g 0 {imprecision}=0, ∈ = up Imp {uncertainty}={inconsistency}. By analogy, if g M but g M then ∈ ∉ mon up f ( ) g inf f q ( ) is amount of inconsistency in g. = Inc q M | q g ∈ ≥ up ⇒ If g M then f ( ) g 0 {inc onsistency}=0, ∈ = low Inc {uncertainty}={imprecision}.

  18. Properties of indices on M mon ⇒ ( ) ( ) ( ) ( ) 1) g g f g f g , f g f g ; ≥ ≥ ≤ 1 2 Imp 1 Imp 2 Imp 1 Imp 2 { } 2) f ( ) g inf f (min , g ), = α Imp M α ∈ Pr { } f ( ) g inf f (min , g ); = α Inc M α ∈ Pr 3) g M is rather lower probability than ∈ mon upper probability if f ( ) g f ( ) and r g ather ≥ Imp Inc upper probability then lower probability if f ( ) g f ( ); g < Imp Inc 4) if f complementarily symmetrical index on M − low then f f f . − = Imp Inc

  19. Example ( ) A max ( ) x M , Π = π ∈ X x x x i i up x X ∈ 1 2 3 ( ) 1 0.5 0.5 N A ( ) 1 A M , π = − Π ∈ 1 i i low 0.4 1 0.6 π { } g max N N , M . = ∉ 2 1 2 low ∑ 1 − ( ) | X | Let ( ) v g 2 2 g B ( ) g B ( ), = − − 1 X B 2 ∈ { } X v ( ) g max g B ( ) g B ( ) | B 2 . = − ∈ ∞ f f Imp Inc v v GH v v GH 1 1 2 ∞ N 0.5 0.5 0.5 0 0 0 1 N 0.5(3) 0.6 0.526 0 0 0 2 g 0.2 0.5 0.2 0.03(3) 0.1 0.0288

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend