standing waves for a gauged nonlinear schr odinger
play

Standing waves for a Gauged Nonlinear Schr odinger equation David - PowerPoint PPT Presentation

Standing waves for a Gauged Nonlinear Schr odinger equation David Ruiz Departamento de An alisis Matem atico, Universidad de Granada Granada, 2-6 February, 2015. Outline The problem 1 The limit functional 2 Main results 3 The


  1. Standing waves for a Gauged Nonlinear Schr¨ odinger equation David Ruiz Departamento de An´ alisis Matem´ atico, Universidad de Granada Granada, 2-6 February, 2015.

  2. Outline The problem 1 The limit functional 2 Main results 3

  3. The problem Consider a planar gauged Nonlinear Schr¨ odinger Equation: iD 0 φ + ( D 1 D 1 + D 2 D 2 ) φ + | φ | p − 1 φ = 0. Here t ∈ R , x = ( x 1 , x 2 ) ∈ R 2 , φ : R × R 2 → C is the scalar field, A µ : R × R 2 → R are the components of the gauge potential and D µ = ∂ µ + iA µ is the covariant derivative ( µ = 0, 1, 2 ).

  4. The problem Consider a planar gauged Nonlinear Schr¨ odinger Equation: iD 0 φ + ( D 1 D 1 + D 2 D 2 ) φ + | φ | p − 1 φ = 0. Here t ∈ R , x = ( x 1 , x 2 ) ∈ R 2 , φ : R × R 2 → C is the scalar field, A µ : R × R 2 → R are the components of the gauge potential and D µ = ∂ µ + iA µ is the covariant derivative ( µ = 0, 1, 2 ). In Chern-Simons theory, a modified gauge field equation has been introduced [Hagen, Jackiw, Schonfeld, Templeton, in the ’80s]; see also [Tarantello, PNLDE 2007.] ∂ µ F µν + 1 2 κǫ ναβ F αβ = j ν , F µν = ∂ µ A ν − ∂ ν A µ . Here κ ∈ R is the Chern-Simons constant and ǫ ναβ is the Levi-Civita tensor. Moreover, j µ is the conserved matter current, j 0 = | φ | 2 , j i = 2Im ( ¯ φ D i φ ) .

  5. At low energies, the Maxwell term becomes negligible and can be dropped, giving rise to: 1 2 κǫ ναβ F αβ = j ν . See [Jackiw & Pi, ’90s]. Taking for simplicity κ = 2 , we arrive to the system  iD 0 φ + ( D 1 D 1 + D 2 D 2 ) φ + | φ | p − 1 φ = 0,   ∂ 0 A 1 − ∂ 1 A 0 = Im ( ¯  φ D 2 φ ) , (1) ∂ 0 A 2 − ∂ 2 A 0 = − Im ( ¯ φ D 1 φ ) ,    ∂ 1 A 2 − ∂ 2 A 1 = 1 2 | φ | 2 ,

  6. As usual in Chern-Simons theory, problem (1) is invariant under gauge transformation, φ → φ e i χ , A µ → A µ − ∂ µ χ , for any arbitrary C ∞ -function χ . The initial value problem for p = 3 , as well as global existence and blow-up, has been addressed in [Berg´ e, de Bouard & Saut, 1995; Huh, 2009-2013; Liu-Smith-Tataru 2013; Oh-Pusateri, preprint; Liu-Smith, preprint; Chen-Smith, preprint]. The existence of standing waves for (1) and general p > 1 has been studied in [Byeon, Huh & Seok, 2012 and preprint]. They look for vortex solutions , i.e., solutions in the form:

  7. φ ( t , x ) = u ( r ) e i ( N θ + ω t ) , A 0 ( x ) = A 0 ( | x | ) , A 1 ( t , x ) = − x 2 A 2 ( t , x ) = x 1 | x | 2 h ( | x | ) , | x | 2 h ( | x | ) . Here ( r , θ ) are polar coordinates, h is a positive function and N ∈ N is the order of the vortex at 0 .

  8. φ ( t , x ) = u ( r ) e i ( N θ + ω t ) , A 0 ( x ) = A 0 ( | x | ) , A 1 ( t , x ) = − x 2 A 2 ( t , x ) = x 1 | x | 2 h ( | x | ) , | x | 2 h ( | x | ) . Here ( r , θ ) are polar coordinates, h is a positive function and N ∈ N is the order of the vortex at 0 . With this ansatz they obtain the nonlocal equation: � � ω + ( h u ( | x | ) − N ) 2 u = | u | p − 1 u , − ∆ u + + A 0 ( | x | ) ( P ) | x | 2 with � + ∞ � r h ( s ) − N s 2 u 2 ( s ) ds , u 2 ( s ) ds . h u ( r ) = A 0 ( r ) = s 0 r Moreover, any solution satisfies that u ( | x | ) ∼ | x | N around the origin.

  9. In [Byeon, Huh & Seok, 2012 and preprint] it is shown that ( P ) is indeed the Euler-Lagrange equation of the energy functional: � � I ω ( u ) = 1 1 � |∇ u | 2 + ω u 2 � R 2 | u | p + 1 dx dx − p + 1 2 R 2 � � | x | � 2 � u 2 ( x ) + 1 u 2 ( s ) s ds − 2 N dx | x | 2 8 R 2 0 That functional is defined in the space: � � u 2 ( x ) � u ∈ H 1 r ( R 2 ) : H = | x | 2 dx < + ∞ . R 2 It can be proved that I ω is well-defined and C 1 .

  10. A useful inequality In [Byeon, Huh & Seok 2012 and preprint], it is proved that, for any u ∈ H , � R 2 | u ( x ) | 4 dx � 1 2 � � � 1 � � | x | � � � 2 2 u 2 R 2 |∇ u ( x ) | 2 dx u 2 ( s ) s ds − 2 N � 2 dx . | x | 2 R 2 0 Furthermore, the equality is attained by the family of functions: √ � � 8 λ ( N + 1 ) | λ x | N u λ = ∈ H : λ ∈ ( 0, + ∞ ) . 1 + | λ x | 2 ( N + 1 )

  11. Byeon-Huh-Seok results If p > 3 , I ω is unbounded from below and exhibits a mountain-pass geometry. The case p = 3 is special: static solutions can be found via the minimizers of the previous inequality. Alternatively, one can pass, via a self-dual equation, to a singular Liouville equation in R 2 . If 1 < p < 3 solutions are found as minimizers on a L 2 -sphere if N = 0 . Hence, ω comes out as a Lagrange multiplier, and it is not controlled. In general, the global behavior of the energy functional I ω is not studied for 1 < p < 3 . This is the main purpose of this talk.

  12. On the boundedness from below of I ω Theorem Let N ∈ N , p ∈ ( 1, 3 ) . There exists ω 0 ( p ) > 0 such that: If 0 < ω < ω 0 , then I ω is unbounded from below. If ω > ω 0 , then I ω is bounded from below and coercive. If ω = ω 0 , then I ω 0 is bounded from below, not coercive and ´ ınf I ω 0 < 0 . The threshold value ω 0 has an explicit expression, and it is independent of N . A. Pomponio and D. R., 2015. Y. Jiang, A. Pomponio and D.R., preprint.

  13. The limit functional Let u a fixed function, and define u ρ ( r ) = u ( r − ρ ) . Let us now estimate I ω ( u ρ ) as ρ → + ∞ . � + ∞ ( 2 π ) − 1 I ω ( u ρ ) = 1 ρ | 2 + ω u 2 ( | u ′ ρ ) r dr 2 0 � + ∞ � � r � 2 u 2 ρ ( r ) + 1 0 su 2 ρ ( s ) ds − 2 N dr 8 r 0 � + ∞ 1 | u ρ | p + 1 r dr . − p + 1 0

  14. The limit functional Let u a fixed function, and define u ρ ( r ) = u ( r − ρ ) . Let us now estimate I ω ( u ρ ) as ρ → + ∞ . � + ∞ ( 2 π ) − 1 I ω ( u ρ ) ∼ 1 − ∞ ( | u ′ | 2 + ω u 2 )( r + ρ ) dr 2 � + ∞ � � r � 2 u 2 ( r ) + 1 − ∞ ( s + ρ ) u 2 ( s ) ds − 2 N dr 8 r + ρ − ∞ � + ∞ 1 − ∞ | u | p + 1 ( r + ρ ) dr . − p + 1

  15. The limit functional Let u a fixed function, and define u ρ ( r ) = u ( r − ρ ) . Let us now estimate I ω ( u ρ ) as ρ → + ∞ . � + ∞ ( 2 π ) − 1 I ω ( u ρ ) ∼ 1 − ∞ ( | u ′ | 2 + ω u 2 ) ρ dr 2 � + ∞ � � r � 2 u 2 ( r ) + 1 − ∞ ρ u 2 ( s ) ds − 2 N dr 8 ρ − ∞ � + ∞ 1 − ∞ | u | p + 1 ρ dr . − p + 1

  16. The limit functional Let u a fixed function, and define u ρ ( r ) = u ( r − ρ ) . Let us now estimate I ω ( u ρ ) as ρ → + ∞ . � + ∞ � 1 − ∞ ( | u ′ | 2 + ω u 2 ) dr ( 2 π ) − 1 I ω ( u ρ ) ∼ ρ 2 � + ∞ � � r � 2 + 1 − ∞ u 2 ( r ) − ∞ u 2 ( s ) ds dr 8 � + ∞ � 1 − ∞ | u | p + 1 dr − . p + 1

  17. The limit functional Let u a fixed function, and define u ρ ( r ) = u ( r − ρ ) . Let us now estimate I ω ( u ρ ) as ρ → + ∞ . � + ∞ � 1 − ∞ ( | u ′ | 2 + ω u 2 ) dr ( 2 π ) − 1 I ω ( u ρ ) ∼ ρ 2 � � + ∞ � 3 + 1 − ∞ u 2 ( r ) dr 24 � + ∞ � 1 − ∞ | u | p + 1 dr − . p + 1

  18. It is natural to define the limit functional J ω : H 1 ( R ) → R , � + ∞ � � + ∞ � 3 J ω ( u ) = 1 dr + 1 � | u ′ | 2 + ω u 2 � − ∞ u 2 dr 2 24 − ∞ � + ∞ 1 − ∞ | u | p + 1 dr . − p + 1 We have I ω ( u ρ ) ∼ 2 πρ J ω ( u ) , as ρ → + ∞ . Then, ´ ınf J ω < 0 ⇒ ´ ınf I ω = − ∞ .

  19. It is natural to define the limit functional J ω : H 1 ( R ) → R , � + ∞ � � + ∞ � 3 J ω ( u ) = 1 dr + 1 � | u ′ | 2 + ω u 2 � − ∞ u 2 dr 2 24 − ∞ � + ∞ 1 − ∞ | u | p + 1 dr . − p + 1 We have I ω ( u ρ ) ∼ 2 πρ J ω ( u ) , as ρ → + ∞ . Then, ´ ınf J ω < 0 ⇒ ´ ınf I ω = − ∞ . We will actually show that ´ ınf J ω < 0 ⇔ ´ ınf I ω = − ∞ .

  20. The limit functional Proposition Let p ∈ ( 1, 3 ) and ω > 0 . Then J ω is coercive and attains its infimum. The proof of the coercivity is based on the Gagliardo-Nirenberg inequality: � u � L 4 ( R ) � C � u ′ � 1/4 L 2 ( R ) � u � 3/4 L 2 ( R ) . Hence � � + ∞ � 3 � � + ∞ � � + ∞ − ∞ u 4 dr � C − ∞ | u ′ | 2 dr + − ∞ u 2 dr . 2

  21. The limit problem The Euler-Lagrange equation of the functional J ω is: � � 2 � � � + ∞ ω + 1 − u ′′ + u = | u | p − 1 u , − ∞ u 2 ( s ) ds in R . (2) 4 � �� � k

  22. The limit problem The Euler-Lagrange equation of the functional J ω is: � � 2 � � � + ∞ ω + 1 − u ′′ + u = | u | p − 1 u , − ∞ u 2 ( s ) ds in R . (2) 4 � �� � k Then u = ± w k up to translations, where √ 1 p − 1 w 1 ( w k ( r ) = k kr ) , and 1 � � p − 1 �� 2 1 − p p + 1 cosh 2 w 1 ( r ) = r . 2

  23. Therefore, � � + ∞ � 2 k = ω + 1 = ω + 1 5 − p − ∞ w k ( r ) 2 dr 4 m 2 k p − 1 , 4 where � + ∞ − ∞ w 1 ( r ) 2 dr . m =

  24. Proposition u is a nontrivial solution of (2) if and only if u ( r ) = ± w k ( r − ξ ) for some ξ ∈ R and k is a root of the equation k = ω + 1 5 − p p − 1 , k > 0. 4 m 2 k (3)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend