stability results for non autonomous dynamical systems
play

Stability results for non-autonomous dynamical systems Cecilia Gonz - PowerPoint PPT Presentation

Stability results for non-autonomous dynamical systems Cecilia Gonz alez Tokman ( Collaborators: G. Froyland, R. Murray & A. Quas ) New Developments in Open Dynamical Systems and Their Applications Banff International Research Station, 19


  1. Stability results for non-autonomous dynamical systems Cecilia Gonz´ alez Tokman ( Collaborators: G. Froyland, R. Murray & A. Quas ) New Developments in Open Dynamical Systems and Their Applications Banff International Research Station, 19 March 2018

  2. Intro Non-autonomous systems and MET Stability Motivation � To develop mathematical tools –analytical and numerical– to analyse and understand transport and mixing phenomena in (non-autonomous) dynamical systems. 13/09/15 20/09/15 http://earth.nullschool.net Cecilia Gonz´ alez Tokman (UQ) Stability results for non-autonomous dynamical systems

  3. Intro Non-autonomous systems and MET Stability Transfer Operators � Powerful analytical tool to investigate global properties of dynamical systems, by considering densities , or ensembles of trajectories. �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� f ������������� ������������� �������������� �������������� Lf ������������� ������������� �������������� �������������� ������������� ������������� �������������� �������������� ������������� ������������� �������������� �������������� ������������� ������������� �������������� �������������� ������������� ������������� �������������� �������������� ������������� ������������� �������������� �������������� ������������� ������������� x Tx � Linear operators encoding the global dynamics, acting on a linear (Banach, Hilbert) space X , � � L : X → X, f · g ◦ T dm = L f · g dm. Cecilia Gonz´ alez Tokman (UQ) Stability results for non-autonomous dynamical systems

  4. Intro Non-autonomous systems and MET Stability Transfer Operators � Very useful for numerical analysis of dynamical systems, e.g. via Markovian models. Numerical approximations to invariant measure of a dynamical system via transfer operators (blue) and long trajectories (red). � Ulam discretisation scheme: P = { B 1 , . . . , B k } partition of the state space into bins , k 1 � � � � E P ( f ) = 1 B j f dm 1 B j . m ( B j ) j =1 Cecilia Gonz´ alez Tokman (UQ) Stability results for non-autonomous dynamical systems

  5. Intro Non-autonomous systems and MET Stability Transfer Operators, Quasi-compactness � Also useful for the analytical study of transport phenomena in dynamical systems. � L is quasi-compact if there exists 0 ≤ k < 1 , called essential spectral radius of L , such that, outside the disc of radius k : ◦ The spectrum of L consists of isolated eigenvalues : 1 = γ 1 , . . . , γ m , m ≤ ∞ , ���������������� ���������������� � � ��� ��� �� �� 1 ���������������� ���������������� � � ��� ��� �� �� ���������������� ���������������� ��� ��� ���������������� ���������������� ��� ��� ���������������� ���������������� ��� ��� ���������������� ���������������� ��� ��� ���������������� ���������������� ��� ��� ���������������� ���������������� ��� ��� ���������������� ���������������� ��� ��� such that | γ 1 | ≥ | γ 2 | ≥ · · · ≥ | γ m | > k , and k ���������������� ���������������� ��� ��� ���������������� ���������������� � � ��� ��� ���������������� ���������������� ��� ��� � � ���������������� ���������������� � � ��� ��� ���������������� ���������������� ��� ��� ���������������� ���������������� ��� ��� ���������������� ���������������� � � ��� ��� �� �� �� �� � � ���������������� ���������������� � � �� �� �� �� � � � � � � � � ◦ Finite-dimensional corresponding � � � � � � � � generalised eigenspaces : E 1 , . . . , E m . Cecilia Gonz´ alez Tokman (UQ) Stability results for non-autonomous dynamical systems

  6. Intro Non-autonomous systems and MET Stability Transfer Operators, Spectral Properties � It is now known that for a rich class of transformations T (including piecewise smooth expanding/hyperbolic maps) and appropriate X , L is quasi-compact. Furthermore, 1 = γ 1 simple � Ergodic system ; f 1 ∈ E 1 � Density of physical invariant measure . n − 1 1 1 � � g ( T j x ) lim =: lim nS n g ( x ) = gf 1 dm, m a.e. x ∈ I. n n →∞ n →∞ j =0 Cecilia Gonz´ alez Tokman (UQ) Stability results for non-autonomous dynamical systems

  7. Intro Non-autonomous systems and MET Stability Transfer Operators, Spectral Properties � It is now known that for a rich class of transformations T (including piecewise smooth expanding/hyperbolic maps) and appropriate X , L is quasi-compact. Furthermore, 1 = γ 1 simple � Ergodic system ; | γ 2 | < 1 � Mixing system ; | γ 2 | � Rate of mixing ; f 1 ∈ E 1 � Density of physical invariant measure . Cecilia Gonz´ alez Tokman (UQ) Stability results for non-autonomous dynamical systems

  8. Intro Non-autonomous systems and MET Stability Transfer Operators, Spectral Properties � It is now known that for a rich class of transformations T (including piecewise smooth expanding/hyperbolic maps) and appropriate X , L is quasi-compact. Furthermore, 1 = γ 1 simple � Ergodic system ; | γ 2 | < 1 � Mixing system ; | γ 2 | � Rate of mixing ; f 1 ∈ E 1 � Density of physical invariant measure . Cecilia Gonz´ alez Tokman (UQ) Stability results for non-autonomous dynamical systems

  9. Intro Non-autonomous systems and MET Stability Transfer Operators, Spectral Properties � It is now known that for a rich class of transformations T (including piecewise smooth expanding/hyperbolic maps) and appropriate X , L is quasi-compact. Furthermore, 1 = γ 1 simple � Ergodic system ; | γ 2 | < 1 � Mixing system ; | γ 2 | � Rate of mixing ; f 1 ∈ E 1 � Density of physical invariant measure . Cecilia Gonz´ alez Tokman (UQ) Stability results for non-autonomous dynamical systems

  10. Intro Non-autonomous systems and MET Stability Transfer Operators, Spectral Properties � It is now known that for a rich class of transformations T (including piecewise smooth expanding/hyperbolic maps) and appropriate X , L is quasi-compact. Furthermore, 1 = γ 1 simple � Ergodic system ; | γ 2 | < 1 � Mixing system ; | γ 2 | � Rate of mixing ; f 1 ∈ E 1 � Density of physical invariant measure . Cecilia Gonz´ alez Tokman (UQ) Stability results for non-autonomous dynamical systems

  11. Intro Non-autonomous systems and MET Stability Transfer Operators, Spectral Properties � It is now known that for a rich class of transformations T (including piecewise smooth expanding/hyperbolic maps) and appropriate X , L is quasi-compact. Furthermore, 1 = γ 1 simple � Ergodic system ; | γ 2 | < 1 � Mixing system ; | γ 2 | � Rate of mixing ; f 1 ∈ E 1 � Density of physical invariant measure . Cecilia Gonz´ alez Tokman (UQ) Stability results for non-autonomous dynamical systems

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend