spontaneous b l breaking as the origin of the hot early
play

Spontaneous B L Breaking as the Origin of the Hot Early Universe - PowerPoint PPT Presentation

Spontaneous B L Breaking as the Origin of the Hot Early Universe Valerie Domcke DESY, Hamburg, Germany in collaboration with W. Buchm uller, K. Schmitz, K. Kamada arxiv[hep-ph]: 1202.6679, 1203.0285, 1305.3392 Spontaneous B L


  1. Spontaneous B − L Breaking as the Origin of the Hot Early Universe Valerie Domcke DESY, Hamburg, Germany in collaboration with W. Buchm¨ uller, K. Schmitz, K. Kamada arxiv[hep-ph]: 1202.6679, 1203.0285, 1305.3392

  2. Spontaneous B − L Breaking as the Origin of the Hot Early Universe Valerie Domcke DESY, Hamburg, Germany in collaboration with W. Buchm¨ uller, K. Schmitz, K. Kamada arxiv[hep-ph]: 1202.6679, 1203.0285, 1305.3392

  3. Spontaneous B − L Breaking as the Origin of the Hot Early Universe Valerie Domcke DESY, Hamburg, Germany in collaboration with W. Buchm¨ uller, K. Schmitz, K. Kamada arxiv[hep-ph]: 1202.6679, 1203.0285, 1305.3392

  4. Vanilla Cosmology? Motivation time 105 y 1010 y < 1 s 3 min formation of ? light elements today LHC cosmic microwave energy [eV] background 10 27 10 24 10 21 10 18 10 15 10 12 10 9 10 6 10 3 10 0 10 � 3 10 � 6 Valerie Domcke — DESY — 19.07.2013 — Page 2

  5. Motivation Motivation entropy inflation production matter - dark matter antimatter asymmetry Valerie Domcke — DESY — 19.07.2013 — Page 3

  6. Motivation Motivation entropy inflation production spontaneous breaking of U (1) B − L matter - dark matter antimatter asymmetry Valerie Domcke — DESY — 19.07.2013 — Page 3

  7. Inflation Motivation scalar potential exponential expansion driven by slowly rolling scalar field inflaton field ‘stretched’ quantum fluctuations → inhomogeneities of the cosmic microwave background more a paradigm than a model [Planck ’13] Valerie Domcke — DESY — 19.07.2013 — Page 4

  8. Entropy Production Motivation Expanding, cooling universe: Hot thermal plasma as initial state Reheating: generation of the thermal bath through decay of heavy particles perturbative process Preheating: rapid, nonperturbative process scalar potential tachyonic preheating: triggered by tachyonic instability, exponential growth of low momentum modes [Felder et al. ’01] Higgs field large abundance of non-relativistic Higgs bosons, small abundances of particles coupled to it [Garcia-Bellido et al. ’02] Valerie Domcke — DESY — 19.07.2013 — Page 5

  9. Matter and Dark Matter Motivation Matter-Antimatter asymmetry small, but very significant B − L asymmetry: n B − n ¯ = (6 . 19 ± 0 . 15) · 10 − 10 B [Komatsu et al ’10] n γ leptogenesis: generate matter asymmetry dynamically in lepton sector, typically via decay of heavy Majorana neutrino transfer to baryon sector via SM processes ( ✘✘ B + L Sphalerons) ✘ Dark matter ... see earlier talks here: gravitino or neutralino dark matter Valerie Domcke — DESY — 19.07.2013 — Page 6

  10. Adding U (1) B − L to the SM gauge group Motivation ... see also Shaaban Khalil’s talk top-down approach: U (1) B − L as part of GUT group bottom-up approach: ’accidental’ global symmetry of the SM → gauge symmetry possible after introduction of right-handed neutrinos for anomaly cancellation spontaneously broken at GUT scale l a r i a t n l d a e l c t e s o fi p s g g i H Higgs field Valerie Domcke — DESY — 19.07.2013 — Page 7

  11. Outline Motivation Towards a Consistent Cosmological Picture: Spontaneous B − L Breaking qualitative picture: linking inflation, leptogenesis and dark matter quantitative description: the reheating process in terms of Boltzmann equations Phenomenology Conclusion Valerie Domcke — DESY — 19.07.2013 — Page 8

  12. A Phase Transition in the Early Universe Spontaneous B − L Breaking d d l l e e fi fi s s g g g g i i H Higgs field H Higgs field √ λ B − L − 2 S 1 S 2 ) + 1 2 Φ ( v 2 2 h n i n c i n c i S 1 + h ν ij n c W = √ j H u + W MSSM i 5 ∗ Before After Phase transition hybrid inflation reheating tachyonic preheating [Dvali et al. ’94] leptogenesis cosmic strings dark matter Valerie Domcke — DESY — 19.07.2013 — Page 9

  13. A Phase Transition in the Early Universe Spontaneous B − L Breaking d d l l e e fi fi s s g g g g i inflaton field i H Higgs field H Higgs field d l e fi s √ g g H i λ B − L − 2 S 1 S 2 ) + 1 2 Φ ( v 2 2 h n i n c i n c i S 1 + h ν ij n c W = √ j H u + W MSSM i 5 ∗ Before After Phase transition hybrid inflation reheating tachyonic preheating [Dvali et al. ’94] leptogenesis cosmic strings dark matter Valerie Domcke — DESY — 19.07.2013 — Page 9

  14. A Phase Transition in the Early Universe Spontaneous B − L Breaking d d l l e e fi fi s s g g g g i inflaton field i H Higgs field H Higgs field d l e fi s √ g g H i λ B − L − 2 S 1 S 2 ) + 1 2 Φ ( v 2 2 h n i n c i n c i S 1 + h ν ij n c W = √ j H u + W MSSM i 5 ∗ Before After Phase transition hybrid inflation reheating tachyonic preheating [Dvali et al. ’94] leptogenesis cosmic strings dark matter Valerie Domcke — DESY — 19.07.2013 — Page 9

  15. A Phase Transition in the Early Universe Spontaneous B − L Breaking d d l l e e fi fi s s g g g g i inflaton field i H Higgs field H Higgs field d l e fi s √ g g H i λ B − L − 2 S 1 S 2 ) + 1 2 Φ ( v 2 2 h n i n c i n c i S 1 + h ν ij n c W = √ j H u + W MSSM i 5 ∗ Before After Phase transition hybrid inflation reheating tachyonic preheating [Dvali et al. ’94] leptogenesis cosmic strings dark matter Valerie Domcke — DESY — 19.07.2013 — Page 9

  16. A Phase Transition in the Early Universe Spontaneous B − L Breaking d d l l e e fi fi s s g g g g i inflaton field i H Higgs field H Higgs field d l e fi s √ g g H i λ B − L − 2 S 1 S 2 ) + 1 2 Φ ( v 2 2 h n i n c i n c i S 1 + h ν ij n c W = √ j H u + W MSSM i 5 ∗ Before After Phase transition hybrid inflation reheating tachyonic preheating [Dvali et al. ’94] leptogenesis cosmic strings dark matter Valerie Domcke — DESY — 19.07.2013 — Page 9

  17. A Phase Transition in the Early Universe Spontaneous B − L Breaking d d l l e e fi fi s s g g g g i inflaton field i H Higgs field H Higgs field d l e fi s g g H i √ B − L − 2 S 1 S 2 ) + 1 λ 2 Φ ( v 2 2 h n i n c i n c i S 1 + h ν ij n c W = √ i 5 ∗ j H u + W MSSM SSB of B − L links inflation, (p)reheating, leptogenesis and DM Valerie Domcke — DESY — 19.07.2013 — Page 9

  18. A Useful Tool: Boltzmann Equations Spontaneous B − L Breaking evolution of the phase space density f X ( t, p ) : � ∂ ∂t − ˙ � a a p ∂ ˆ � L f X ( t, p ) = f X ( t, p ) = C X ∂p collision operator: C X ( Xab.. ↔ ij.. ) = 1 � d Π( X | a, b, .. ; i, j, .. )(2 π ) 4 δ (4) ( P out − P in ) 2 g X E X × [ f i f j .. |M ( ij.. → Xab.. ) | 2 − f X f a f b .. |M ( Xab.. → ij.. ) | 2 ] � ˙ � 2 = ρ tot Friedmann equation: 3 M 2 a P a Calculating the time evolution of phase space densities Valerie Domcke — DESY — 19.07.2013 — Page 10

  19. A Useful Tool: Boltzmann Equations Spontaneous B − L Breaking evolution of the phase space density f X ( t, p ) : � ∂ ∂t − ˙ � a a p ∂ ˆ � L f X ( t, p ) = f X ( t, p ) = C X ∂p collision operator: C X ( Xab.. ↔ ij.. ) = 1 � d Π( X | a, b, .. ; i, j, .. )(2 π ) 4 δ (4) ( P out − P in ) 2 g X E X × [ f i f j .. |M ( ij.. → Xab.. ) | 2 − f X f a f b .. |M ( Xab.. → ij.. ) | 2 ] � ˙ � 2 = ρ tot Friedmann equation: 3 M 2 a P a Calculating the time evolution of phase space densities Valerie Domcke — DESY — 19.07.2013 — Page 10

  20. A Useful Tool: Boltzmann Equations Spontaneous B − L Breaking evolution of the phase space density f X ( t, p ) : � ∂ ∂t − ˙ � a a p ∂ ˆ � L f X ( t, p ) = f X ( t, p ) = C X ∂p collision operator: C X ( Xab.. ↔ ij.. ) = 1 � d Π( X | a, b, .. ; i, j, .. )(2 π ) 4 δ (4) ( P out − P in ) 2 g X E X × [ f i f j .. |M ( ij.. → Xab.. ) | 2 − f X f a f b .. |M ( Xab.. → ij.. ) | 2 ] � ˙ � 2 = ρ tot Friedmann equation: 3 M 2 a P a Calculating the time evolution of phase space densities Valerie Domcke — DESY — 19.07.2013 — Page 10

  21. A Useful Tool: Boltzmann Equations Spontaneous B − L Breaking evolution of the phase space density f X ( t, p ) : � ∂ ∂t − ˙ � a a p ∂ ˆ � L f X ( t, p ) = f X ( t, p ) = C X ∂p collision operator: C X ( Xab.. ↔ ij.. ) = 1 � d Π( X | a, b, .. ; i, j, .. )(2 π ) 4 δ (4) ( P out − P in ) 2 g X E X × [ f i f j .. |M ( ij.. → Xab.. ) | 2 − f X f a f b .. |M ( Xab.. → ij.. ) | 2 ] � ˙ � 2 = ρ tot Friedmann equation: 3 M 2 a P a Calculating the time evolution of phase space densities Valerie Domcke — DESY — 19.07.2013 — Page 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend