spin orbit interaction a path to topological matter in
play

Spin-Orbit Interaction A Path to Topological Matter in Real and - PowerPoint PPT Presentation

Spin-Orbit Interaction A Path to Topological Matter in Real and Momentum Space Peter Grnberg Institute and Institute for Advanced Simulation Stefan Blgel PAGE 1 Trieste MaX Conference, 31. Jan. 2018 Topology of electrons in an


  1. Spin-Orbit Interaction – A Path to Topological Matter in Real and Momentum Space Peter Grünberg Institute and Institute for Advanced Simulation Stefan Blügel PAGE 1 Trieste MaX Conference, 31. Jan. 2018

  2. Topology of electrons in an insulator H(k) Fibre bundle theory integer Chern number – topological invariant of fibre bundles Nash and Sen, Topology and Geometry for Physicists PAGE 2 Trieste MaX Conference, 31. Jan. 2018

  3. Topological insulators Topological matter Topology of Bloch wavefunction conduction conduction band band energy edge 2D states valence valence band band momentum Topological classification Z 2 = 1 Z 2 = 0 PAGE 3 Trieste MaX Conference, 31. Jan. 2018

  4. Topological insulators Topological matter Dissipationless edge states conduction defect band energy edge 2D states valence band Quantum Spin Hall Effect momentum PAGE 4 Trieste MaX Conference, 31. Jan. 2018

  5. Topological Characterization of Solids 3D Topological Insulators Response Properties Relativistic GW electronic structure causes non- Bi 2 Se 3 trivial topological invariants Aguilera et al. , PRB 88 , Goal: 045206 (2013) Energy Bi 2 Te 3 § Exploration of topological Bi 2 Se 3 Berry curvature phase space Sb 2 Te 3 ZZ Ω ˆ m k x dk x d ˆ Z ∼ m { r , p , M , t } Spin Orbit Torque Generation of Spin-Currents M (b) T odd z z even ˆ T ˆ m m QAnomalous HE , j E , j H. Zhang et al ., PRL (2012) PAGE 5 Trieste MaX Conference, 31. Jan. 2018

  6. Chiral magnetic skyrmion Im Ma Juba Da Sa from Bertrand Dupé PAGE 6 Trieste MaX Conference, 31. Jan. 2018

  7. Chiral magnetic skyrmion Im Ma Juba Da from Karin Everschor-Sitte from Bertrand Dupé Sa PAGE 7 Trieste MaX Conference, 31. Jan. 2018

  8. Chiral magnetic skyrmion Skyrmion= non-trivial, hedgehog smooth mapping from S d vector field of to order parameter space magnetization (“trivial winding at infinity”) direction magnetization direction m ( x,y )= M / M m ( x,y ) Smooth mapping Here d=2, S 2 → S 2 ✓ ∂ m ◆ Q = 1 Z ∂ x × ∂ m dxdy R 2 m · 4 π ∂ y PAGE 8 Trieste MaX Conference, 31. Jan. 2018

  9. Skyrmions: Experimental observations Layers of materials with intrinsic chirality Ultrathin films with induced chirality (cubic helimagnets FeGe, MnSi, Fe 1-x Co x Si) (Fe/Ir, Mn/W, Pd/Fe/Ir) Lorentz Transmission Electron Microscopy Spin-Polarized Scanning Tunneling Microscopy X.Z. Yu et al. Nature 465 , 90 (2010) N. Romming et al. Science 341 , 636 (2013) Magnetic Force Microscopy B app ≠ 0 P. Milde et al., Science 340, 1076 (2013) PAGE 9 Trieste MaX Conference, 31. Jan. 2018

  10. Multiscale modeling v Micromagnetic-model: Z A | r m | 2 + D : ( r m ⇥ m ) + m · K · m � B m · ˆ ⇥ ⇤ E ( m ) = e z d r R 2 v Spin-Lattice Model: c H = 1 1 X X X X z }| { ⇥ ⇤ m i m j − ( m i ˆ e i )( m j ˆ J ij m i m j + D ij m i × m j + m i K m i + e i ) r 3 2 ij ij ij i ij v DFT-model: E DFT e rot ) = E DFT noSOC ( q ) + ∆ E DFT tot ( q , ˆ SOC ( q , ˆ e rot ) From total energy calculation to • A, D , K • J ij , D ij M. Heide, G. Bihlmayer, and S. Blügel, Physica B 404 , 2678 (2009) B. Zimmermann, M. Heide, G. Bihlmayer, and S. Blügel, PRB 90 , 115427 (2014) B. Schweflinghaus, B. Zimmermann, G. Bihlmayer and S. Blügel, PRB 94 , 024403 (2016) PAGE 10 Trieste MaX Conference, 31. Jan. 2018

  11. Multiscale modeling v Micromagnetic-model: Z A | r m | 2 + D : ( r m ⇥ m ) + m · K · m � B m · ˆ ⇥ ⇤ E ( m ) = e z d r R 2 v Spin-Lattice Model: c H = 1 1 X X X X z }| { ⇥ ⇤ m i m j − ( m i ˆ e i )( m j ˆ J ij m i m j + D ij m i × m j + m i K m i + e i ) r 3 2 ij ij ij i ij v DFT-model: E DFT e rot ) = E DFT noSOC ( q ) + ∆ E DFT tot ( q , ˆ SOC ( q , ˆ e rot ) ˆ e rot ˆ e rot q M. Heide, G. Bihlmayer, and S. Blügel, Physica B 404 , 2678 (2009) B. Zimmermann, M. Heide, G. Bihlmayer, and S. Blügel, PRB 90 , 115427 (2014) B. Schweflinghaus, B. Zimmermann, G. Bihlmayer and S. Blügel, PRB 94 , 024403 (2016) PAGE 11 Trieste MaX Conference, 31. Jan. 2018

  12. Ab-initio A, D, K v Micromagnetic-model: Z A | r m | 2 + D : ( r m ⇥ m ) + m · K · m � B m · ˆ ⇥ ⇤ E ( m ) = e z d r R 2 v Spin-Lattice Model: c H = 1 1 X X X X z }| { ⇥ ⇤ m i m j − ( m i ˆ e i )( m j ˆ J ij m i m j + D ij m i × m j + m i K m i + e i ) r 3 2 ij ij ij i ij v DFT-model: E DFT e rot ) = E DFT noSOC ( q ) + ∆ E DFT tot ( q , ˆ SOC ( q , ˆ e rot ) § Spin Stiffness: A = ∂ 2 X ∂ q 2 E DFT J 0 j R 2 tot ( q ) ∝ 0 j j > 0 § Spiralization (micromagnetic D) D = ∂ ∂ q E DFT X tot ( q ) ∝ D 0 j ⊗ R 0 j j > 0 PAGE 12 Trieste MaX Conference, 31. Jan. 2018

  13. KKRnano: all-electron linear scaling for thousands of atoms i Setting up reference system Preconditioned iterative solution of sparse linear equation (Dyson-equation) Calculate charge density Calculate new potential Mixing potentials f Schematic representation of workflow in KKRnano PAGE 13 Trieste MaX Conference, 31. Jan. 2018

  14. What happens when space inversion symmetry broken (GaAs, InSb, interfaces, surfaces, ...) Time reversal + space inversion symmetry: Time reversal only , Effective spin-orbit (“magnetic”) field Ω: Time reversal symmetry: I. Zˇuti ́c, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004) . PAGE 14 Trieste MaX Conference, 31. Jan. 2018

  15. Spin-Orbit Coupling v spin-orbit coupling has fascinating realizations and ramifications in solids Examples: o Orbital and topological orbital magnetic moment o Magnetic Anisotropy o Dzyaloshinskii-Moriya Interaction o Rashba Effect , Dresselhaus Effect o Topological Insulator, Weyl Semimetals o Spin-Relaxation (Elliot-Yafet, Dyakonov-Perel) o Anomalous Hall Effect, Spin Hall Effect o Spin-Orbit torque o Quantum Spin Hall Effect, Quantum Anomalous Hall Effect PAGE 15 Trieste MaX Conference, 31. Jan. 2018

  16. Magnetic materials & spintronics have a market Energy Storage Memory permanent magnets hard disk drive MRAM IoT magneto-caloric materials TMR magnetic sensors PAGE 16 Trieste MaX Conference, 31. Jan. 2018

  17. Example 1: Bandstructure of topological insulator PAGE 17 Trieste MaX Conference, 31. Jan. 2018

  18. GW with spin-orbit coupling (SOC) MOST GW WORKS PUBLISHED a posteriori SOC: LDA (without SOC) + GW (without SOC) + SOC(LDA) GW +SOC 18 Trieste MaX Conference, 31. Jan. 2018

  19. GW with spin-orbit coupling (SOC) MOST GW WORKS PUBLISHED a posteriori SOC: LDA (without SOC) + GW (without SOC) + SOC(LDA) GW +SOC OUR WORK full SOC: Sakuma et al. , PRB 84 085144 (2011) LDA (with SOC) + GW (with SOC) (more accurate but ~10 times more time-consuming) G SOC W SOC 19 Trieste MaX Conference, 31. Jan. 2018

  20. GW with spin-orbit coupling (SOC) MOST GW WORKS PUBLISHED a posteriori SOC: LDA (without SOC) + GW (without SOC) + SOC(LDA) GW +SOC OUR WORK full SOC: LDA+SOC G SOC W SOC Sakuma et al. , PRB 84 085144 (2011) GW +SOC LDA (with SOC) + GW (with SOC) (more accurate but ~10 times more time-consuming) G SOC W SOC Aguilera, Friedrich, Blügel, PRB 88 , 165136 (2013) 20 Trieste MaX Conference, 31. Jan. 2018

  21. (~100 nm) 100 QL slab of Bi 2 Se 3 contribution " GW " "LDA" of the 1 st QL max min 21 Trieste MaX Conference, 31. Jan. 2018

  22. (~100 nm) 100 QL slab of Bi 2 Se 3 contribution " GW " "LDA" of the 1 st QL max min Dispersion of the lower Dirac cone? 22 Trieste MaX Conference, 31. Jan. 2018

  23. Comparison with ARPES: Bi 2 Se 3 23

  24. Comparison with ARPES: Bi 2 Se 3 " GW " "LDA" ARPES 1 eV 1 eV 0.3 Å -1 0.3 Å -1 0.3 Å -1 24

  25. Example 2: Skyrmion design PAGE 25 Trieste MaX Conference, 31. Jan. 2018

  26. Skyrmions for Spintronics The Fert criteria • Chiral magnetism in thin films, but not too thin (min 3 layers) • Try find small but not too small skyrmions ≈ 5-10 nm • Above room temperature and zero magnetic field • Fit to the field of spintronics: injection , transport , detection , manipulation at reasonable fields and currents • Fast & energy efficient • Also for logic operation • Metallic magnetism Albert Fert, Vincent Cross and João Sampaio, Nature Nanotechnology 8 , 152 (2013) PAGE 26 Trieste MaX Conference, 31. Jan. 2018

  27. Multiscale modeling v Micromagnetic-model: Z A | r m | 2 + D : ( r m ⇥ m ) + m · K · m � B m · ˆ ⇥ ⇤ E ( m ) = e z d r R 2 v Spin-Lattice Model: c H = 1 1 X X X X z }| { ⇥ ⇤ m i m j − ( m i ˆ e i )( m j ˆ J ij m i m j + D ij m i × m j + m i K m i + e i ) r 3 2 ij ij ij i ij PAGE 27 Trieste MaX Conference, 31. Jan. 2018

  28. Exchange bias stabilized skyrmions Mn/W(100) (nm) 1.3 -1.3 -2.5 2.5 20 4 ) m o 15 t 2 a / V K 100 e m 0 ( T 10 O T E -2 -0.2 0.0 0.2 -1 (nm -1 ) 5 K 110 0 -5 SR SOC -10 -0.8 -0.4 0.0 0.4 0.8 Spin-polarized STM image -1 (nm -1 ) Theory result Ferriani et al., PRL 101 027201 (2008) c H = 1 1 X X X X z }| { ⇥ ⇤ J ij m i m j + D ij m i × m j + m i K m i + m i m j − ( m i ˆ e i )( m j ˆ e i ) r 3 2 ij ij ij i ij PAGE 28 Trieste MaX Conference, 31. Jan. 2018

  29. Interlayer Exchange Bias Skyrmions Spontaneous nucleation of individual skyrmion with finite life-time Skyrmion lattice (SkL) phase � � iSk phase SkL phase <010> SS phase <100> � � Nandy, Kiselev, Blügel, PRL. 116 , 177202 (2016) PAGE 29 Trieste MaX Conference, 31. Jan. 2018

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend