topological cooper pairing based on spin orbit
play

Topological Cooper-pairing based on spin-orbit interactions 753 - PowerPoint PPT Presentation

Frontiers of Nanoscience International Center for Theoretical Physics Trieste, August 23 September 1, 2015 Topological Cooper-pairing based on spin-orbit interactions 753 Topological Superconductors or Superfluids Why are they of


  1. Frontiers of Nanoscience International Center for Theoretical Physics Trieste, August 23 – September 1, 2015 Topological Cooper-pairing based on spin-orbit interactions

  2. 753 ¡ Topological Superconductors or Superfluids Why are they of interest? possible candidates for quantum computing reason : excitations (particles), topolog. protected against decoherence Majorana fermions , non-Abelian statistics Different types of topological superfluids : solids or cold atoms (a) superconductivity induced by proximity effect in - topolog. semiconductors - convent. semimetals or metals with large SO interaction (b) intrinsic topolog. superfluids , e.g., due to spin-orbit interactions 3 He B-phase , Cu x Bi 2 Se 3

  3. 749a ¡ prerequisite topolog. insulator or superconductor : integer Chern number ≠ 0 topol. order parameter class of Hamiltonians with the same Chern number , effective field theory analogue G − L ( ) = e i kr u m k r ( ) ψ m k r Berry phase: Bloch state m = band index closed path C ( ) = u m start ( ) e [ ] i γ m C u m end Berry-­‑flux ¡ [ ] = i ( ) ∇ k u m k ( ) ( ) ∫ ∫ γ m C = i A m k u m k d k d k C C ( ) dS ∫ = i curl A m k n m = 1 ( ) dS ( ) = curl A m k ( ) ∫ ; „magnet. flux“ F m k F m k 2 π BZ occ ∑ N = n m Chern number m

  4. 748a ¡ Edge or surface modes of topological insulators and superconductors when C ≠ 0 edge modes ; well known example : QH effect time-reversal symm. plays important role no TR symm : chiral edge states , e.g. QH effect , classified by integer when SC edge states give raise to Majorana fermions with TR symm : helical edge states , e.g. SQH effect , classified by  2

  5. 742a ¡ Special features of topol. superconductors ⎛ ⎞ Δ ⎛ ⎞ H 0 ( ) H = 1 c ∑ c + c ⎜ ⎟ Bogoliubov – de Gennes Hamiltonian ⎜ ⎟ ⎜ ⎟ Δ * − H 0 c + ⎝ ⎠ 2 ⎝ ⎠ k for Δ = 0 two copies of H 0 ¡ ¡ particle-hole symm. ( ) Ξ − 1 = − H − k ( ) Ξ = τ x K ⇒ Ξ H k bound states : C ¡= ¡0 ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡C ¡= ¡1 ¡ Zero energy mode ( ) E QP ( ) E = 0 ( ) E = 0 ≡ γ + = QP QP ( ) − E = QP ( ) E + QP Majorana bound states stored nonlocally at the end of a chain single state ( ) E ( ) − E + or in a vortex associated with and ! QP QP

  6. 754 ¡ Majorana Fermions particle is own antiparticle 1 electron = 2 majoranas fractionalization c + = 1 c + = 1 ( ) ( ) γ A − i γ B γ A + i γ B + + γ A = γ A γ B = γ B ; , 2 2 { } = δ ij γ i , γ j C ≠ 0 prerequisite : Chern number , e.g. 3 He-B phase , Cu x Bi 2 Se 3 how to generate topological superconductor? proximity effect 1D 2D Majorana end states Majorana vertex (L. Fu + C. Kane) (J. Sau et al.)

  7. 728b ¡ Superconductors with Rashba-type spin-orbit interaction e.g., monolayer of Pb or ultracold atoms or via proximity effect ( ) ∑ H s0 = α v F0 e z × k σ Rashba k W 2 ( ) = ε 0 k ( ) + λα v F0 k W 1 ε k λ ; h = 0 d intraband vs inter-band pairing è intraband pairing : spin singlet + triplet G. Zwicknagl inter-band pairing : spin triplet

  8. 751 ¡ inter-band pairing : finite pairing momentum c k + q 2 , λ c − k + q 2 , λ k SO interaction is pair breaking - k degeneracy q ∑ Δ = Δ ν e i q ν r ν intraband pairing : time-reversed pairing topolog. trivial

  9. 733a ¡ Large spin-orbit interaction only intraband pairing left ( ) ( ) = ε 0 k ( ) − α k x σ y − k y σ x H = H 0 + H int Hamiltonian : H 0 k electron-phonon interaction : ∑ Δ λ = λλ ' c − k ' λ ' c k ' λ ' mean field : v 0 ∑ ∑ + c − k λ + c − k ' λ ' c k ' λ ' H int = λλ ' c k λ v 0 k ' λ ' kx ≥ 0 k λ k ' λ ' kx ≥ 0 k ' x ≥ 0 Δ + = −Δ − = Δ with G. Zwicknagl ¡ topological superfluids (C. Zhang et al. (2008), H ze = σ z h 2D : out of plane magnetic field Sato et al. (2009)) ⎛ ⎞ E E ⎛ ⎞ H 0 k + q − i Δ σ y ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ 2 ( ) = ⎜ ⎟ µ 1 H k ⎜ ⎟ ⎛ ⎞ * − k + q i Δ * σ y − H 0 ⎜ ⎜ ⎟ ⎟ ⎝ ⎠ ⎝ 2 ⎠ µ 2 k k q = pairing momentum

  10. 747a ¡ Topological edge states external magnetic field perpendicular to plane two Fermi surfaces one Fermi surface Zeeman field  H  z 2 + µ 2 2 + µ 2 µ B H > Δ 0 µ B H = 0 µ B H = Δ 0 Sato, Takahashi, Fujimoto

  11. 746aEN ¡ A. Yazdani, A. Bernevig et al. (2014) chain of Fe atoms on Pb (in a trench) strong SO interaction induction of SC on Fe chain (proximity effect) STM along chain

  12. 752 ¡ modified version (J. Alicea) : splitting of SO bands by in-plane field prerequisite : semiconduct. grown along (110) direction, e.g., InSb Rashba + Dresselhaus SO interaction Dresselhaus : favors spin alignment normal to plane Rashba : spins within plane are favored ⎡ ⎤ ⎛ ⎞ 2 + 1 1 ∫ H 0 + H 0 = d 2 r ψ + − ∂ x ∂ y ⎟ − µ − i α D σ z ∂ x ψ ⎢ ⎥ 2 ⎜ ⎝ ⎠ ⎢ 2m x 2m y ⎥ ⎣ ⎦ H z e = g µ B ( ) ψ r ψ + α x σ x ∂ y − α y σ y ∂ x ∫ ∫ H R = − i d 2 r ψ + σ y ψ 2 h y d 2 SC via proximity effect in-plane field opens gap when µ < g µ B 2 h y

  13. 725 ¡ 2D case : magnet. field in plane ; h = µ B H / Δ 0 ∑ ( ) = α = 0.1 for h > 0.85 Δ λ q λλ ' c v 0 2 λ ' c − k ' + q k ' + q 2 λ ' k ' λ ' kx > 0 inhomogeneous sc. state ! corresponds to type II superconductors interband pair scattering is still taking place h > h cr Cooper pairs break up ( ) ( ) N E N E N 0 N 0 N 0 = N - + N + 1 1 h > 0.85 h  1 E E with G. Zwicknagl Δ < Δ 0 Δ 0 0 0

  14. 745a ¡ as h increases more and more 2. phase transition is expected Cooper pairs with pairing momentum Q 1 = 2q 1 Q 2 = -2q 1 q 1 = q 2 = h v F character of 2. phase transition is unknown details rather different Q = 0 Q 1 ≠ 0 Q 1 , Q 2 ≠ 0 h for thin films and for 0 h c  Δ 0 ultracold atoms due to h c different energy scales! (W. Zhang + W. Yi (2013) Y. Cao at al. (2014), C. Qu et al. (2014))

  15. 734a ¡ h x + h ⊥ Two applied magnetic fields : finite pairing momentum ( ) Δ = Δ 0 e iqy ; q = 0 , q , 0 no charge current t-FFLO state gapless t-sc? polarized fermionic system like paired spinless special case fermions similar to Fe chain no spin current k 0 ¡

  16. 750 ¡ Conclusion • Topological superfluidity is feasible in systems with sufficiently large SO interaction in thin films (absence of inversion symmetry) or in optical lattice with ultracold atoms • SC may be induced by proximity effects • Magnetic fields perpendicular and parallel to the film play an important role in order to generate topological superconductivity • Topological superconductors will have Majorana bound states in vortices

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend