spin liquid behaviour in
play

Spin-liquid Behaviour in Sc 2 Ga 2 CuO 7 Avinash V. Mahajan IIT - PowerPoint PPT Presentation

Workshop on current trends in frustrated magnetism, 9-13 Feb 2015, JNU Spin-liquid Behaviour in Sc 2 Ga 2 CuO 7 Avinash V. Mahajan IIT Bombay GENERAL THEME OF OUR WORK Explore systems for novel magnetism Low dimensional, frustrated


  1. Workshop on current trends in frustrated magnetism, 9-13 Feb 2015, JNU Spin-liquid Behaviour in Sc 2 Ga 2 CuO 7 Avinash V. Mahajan IIT Bombay

  2. GENERAL THEME OF OUR WORK • Explore systems for novel magnetism • Low dimensional, frustrated magnets and spin- liquid behaviour • 3 d /4 d /5 d systems... strong spin-orbit coupling • Characterisation…structure, χ (T), C P (T), NMR • Here, I will focus on Sc 2 Ga 2 CuO 7

  3. Magnetic Frustration Balents, KITP Few examples: Triangular: NiGa 2 S 4 , Ba 3 CuSb 2 O 9 Kagome: ZnCu 3 (OH) 6 Cl 2 , SrCr 9p Ga 12 − 9p O 19 Hyperkagome: Na 4 Ir 3 O 8 Pyrochlore: Y 2 Mo 2 O 7 , Ho 2 Ti 2 O 7

  4. STRUCTURE OF Sc 2 Ga 2 CuO 7 Triangular Cu planes Triangular Ga bi-planes 14 Å Triangular Cu planes

  5. Cu PLANE AND Ga BI-PLANE

  6. X-RAY AND NEUTRON DIFFRACTION (PSI) Ò Small amts of impurities….Sc 2 O 3 ~1.2 %, CuGa 2 O 4 ~0.5% Ò Cu-Ga antisite disorder expected due to their similar ionic sizes. Ò Due to similar scattering lengths of Cu and Ga (in both XRD and ND), refinements are very similar for various occupancies Ò The (0, 0, 0.25) planes are nearly fully Ga (10-15% Cu). The biplanes are an equal mix.

  7. ACTUAL STRUCTURE Triangular Cu Ga planes Triangular Ga-Cu bi-planes 14 Å Triangular Cu Ga planes

  8. MAGNETIC SUSCEPTIBILITY ¡ 3.0 12 − 1 ¡ Z F C 0.03 ( χ−χ 0 ) µ eff = 1.79 µ B ¡ χ ( cm 3 /mol ) 2.5 ¡F C θ ~ -50 K 0.02 10 χ−χ 0 ) -­‑1 (10 2 ¡m ol/C m 3 ) H= ¡25 ¡Oe No ZFC/FC bifurcation 0.01 χ ( 10 -­‑2 ¡ cm 3 /mol ) 2.0 8 0.00 1 10 100 T (K ) 1.5 6 Z F C 1.0 ( χ−χ 4 ¡C urie-­‑Weis s ¡F it 0.5 H ¡= ¡5 ¡kO e 2 0.0 0 0 100 200 300 400 T (K )

  9. MAGNETISATION ISOTHERMS ¡ ¡ 1000 g=2.0 g=2.1 800 M (H, T) = χ H + Brillouin fcn ¡1.8K ¡1.8K 600 consistent with about 12% free spins ¡2.5K ¡2.5K ¡ ¡ ¡ ¡3.0K 3.0K 400 3 /mol) ¡3.6K ¡3.6K (b) 200 (a) ¡4.5K ¡4.5K ¡ ¡F IT ¡ ¡F IT 0 ¡ ¡ M ¡(G ¡cm ¡ ¡ ¡ 1000 ¡g=2.2 g=2.3 800 ¡1.8K ¡1.8K 600 ¡2.5K ¡2.5K ¡ ¡ ¡ ¡ ¡3.0K ¡3.0K 400 ¡3.6K ¡3.6K 200 (c) ¡4.5K ¡4.5K (d) ¡ ¡F IT ¡ ¡F IT 0 0 20 40 60 80 0 20 40 60 80 ¡ H (kO e)

  10. 71 Ga NMR (AMES LAB) NMR susceptibility shows a broad max around 50 K Above 30K consistent with HTSE of triangular Heisenberg Two Ga lines originate from the Ga in the two planes

  11. 71 Ga AND 45 Sc SPIN-LATTICE RELAXATION RATE 1/KT 1 T α A Γ /( Γ 2 + ω N 2 ) Γ is the inverse of the correlation time of 1/T 1 α T 3.2 fluctuating hyperfine fields at the nucleus

  12. Slowing down of fluctuation frequency of Cu spins

  13. HEAT CAPACITY (MPICPfS DRESDEN) 100 Schottky anomaly 10 C p ¡(J /mol ¡K ) 1 10kO e Schottky 0kO e + 0.1 40kO e Lattice 70kO e + 90kO e “intrinsic” 0.01 120kO e 140kO e 1 10 100 T (K )

  14. ANALYSIS OF HEAT CAPACITY Ò Subtract data at different fields from each other (removes the lattice and any field independent contribution) Ò Fit such data to a combination of two Schottky terms Ò Obtain (i) the Schottky gap for various fields and the (ii) fraction of spins which contribute (fixed to 10% in our case) Ò Fit high-T data to a combination of Einstein and Debye terms… extrapolate to low-T Ò Subtract Schottky and lattice part from the measured data to obtain the magnetic contribution C m .

  15. LATTICE HEAT CAPACITY 350 ¡ 8 ¡C p(T ) ¡(0 ¡O e) ¡C p ¡(0 ¡O e) 300 ¡ ¡F it ¡(20-­‑90K ) 6 1 Debye + 3 Einstein with C p ¡(J /mol ¡K ) ¡F IT ¡ ¡F it ¡(0.35-­‑300K ) weights 1:1:4:6 4 250 ¡ Entropy change only about 20% 2 (a) C p ¡(J /mol ¡K ) of the value for ordered S = ½ system 200 0 Even lower at higher fields. 9 18 27 ¡ T (K ) 150 1.2 Δ S ¡(J /mol ¡K ) 100 0.8 ¡ 0.4 50 (b) 0.0 0 20 40 60 80 0 T (K ) 0 50 100 150 200 250 300 350 T ¡(K )

  16. MAGNETIC HEAT CAPACITY ¡ Broad max around 2-4 K 0.4 Similar max seen in other frustrated systems NiGa 2 S 4 , Na 4 Ir 3 O 8 , Ba 3 CuSb 2 O 9 , Ba 3 NiSb 2 O 9 C m ¡(J /mol ¡K ) 0kO e 40kO e 0.2 ¡ 70kO e 90kO e 120kO e 140kO e 0.0 0 2 4 6 T (K )

  17. POWER LAW BEHAVIOUR ¡ 0.31 C m ¡(J /mol ¡K ) Note that in high field data below 1K 1.5 0.92 ¡0kO e There is negligible Schottky as also 0.100 lattice contribution. ¡40kO e Exponent is more robust. 1.0 ¡70kO e In any case, there is a field induced ¡ 1.5 suppression of C m at low-T. ¡90kO e (b) 1.9 0.010 120kO e 140kO e 1.9 1 10 T (K )

  18. Conclusion § Sc 2 Ga 2 CuO 7 has “triangular” Cu planes with some Ga/Cu disorder § Large Curie-Weiss θ = -50K but no ordering/freezing down to 50mK § NMR susceptibility follows HTSE for a Heisenberg triangular system with J ~ 40 K § Slowing down of Cu spin fluctuations below 2 K as T 2.2 § Magnetic heat capacity follows power law (T 2 ) at low-T for H > 90 kOe § Field induced suppression of the magnetic excitations at low-T at lower fields § We suggest a quantum spin liquid ground state for Sc 2 Ga 2 CuO 7

  19. Collaboration and Funding IIT Bombay:Ramender Kumar, B. Koteswararao MPICPfS Dresden: P. Khuntia, M. Baenitz Ames Lab ISU: P. Khuntia, Yuji Furukawa EPFL/PSI: P. Freeman, H. Ronnow, Denis Sheptyakov Indian Institute of Technology Bombay Department of Science and Technology, India Indo-Swiss Joint Research Programme

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend