some recent developments in the theory of linear mrd codes
play

Some recent developments in the theory of linear MRD-codes Olga - PowerPoint PPT Presentation

Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Some recent developments in the theory of linear MRD-codes Olga Polverino Universit degli Studi della Campania,


  1. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Equivalence of RD-codes C , C ′ ⊂ F m × n linear RD-codes q C , C ′ equivalent C ′ = { AC σ B : C ∈ C} A ∈ GL ( m , F q ) , B ∈ GL ( n , F q ) and σ ∈ Aut ( F q ) Aut ( C ) Automorphism group of C Aut ( C ) = { ( A , B , σ ) ∈ GL ( m , q ) × GL ( n , q ) × Aut ( F q ) : A C σ B = C}

  2. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Left and Right idealiser of RD-codes linear RD-code in F m × n C q

  3. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Left and Right idealiser of RD-codes linear RD-code in F m × n C q L ( C ) = { Y ∈ F m × m : YC ∈ C for all C ∈ C} q Left idealiser of C

  4. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Left and Right idealiser of RD-codes linear RD-code in F m × n C q L ( C ) = { Y ∈ F m × m : YC ∈ C for all C ∈ C} q Left idealiser of C R ( C ) = { Z ∈ F n × n : CZ ∈ C for all C ∈ C} q Right idealiser of C

  5. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Left and Right idealiser of RD-codes linear RD-code in F m × n C q L ( C ) = { Y ∈ F m × m : YC ∈ C for all C ∈ C} q Left idealiser of C R ( C ) = { Z ∈ F n × n : CZ ∈ C for all C ∈ C} q Right idealiser of C D. Liebhold, G. Nebe : Automorphism groups of Gabidulin-like codes. Arch. Math. (2016)

  6. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Left and Right idealiser of RD-codes linear RD-code in F m × n C q L ( C ) = { Y ∈ F m × m : YC ∈ C for all C ∈ C} q Left idealiser of C R ( C ) = { Z ∈ F n × n : CZ ∈ C for all C ∈ C} q Right idealiser of C L ( C ) ∗ × R ( C ) ∗ × { id } ⊆ Aut ( C ) D. Liebhold, G. Nebe : Automorphism groups of Gabidulin-like codes. Arch. Math. (2016)

  7. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Left and Right idealiser of MRD-codes Lunardon-Trombetti-Zhou 2017, JACO

  8. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Left and Right idealiser of MRD-codes Lunardon-Trombetti-Zhou 2017, JACO For two equivalent linear metric codes their right (resp. left) idealisers are also equivalent.

  9. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Left and Right idealiser of MRD-codes Lunardon-Trombetti-Zhou 2017, JACO For two equivalent linear metric codes their right (resp. left) idealisers are also equivalent. Let C be a linear MRD code in F m × n with d > 1. q If m ≤ n then L ( C ) is a finite field. Hence | L ( C ) | ≤ q m . If n ≤ m then R ( C ) is a finite field. Hence | R ( C ) | ≤ q n .

  10. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Left and Right idealiser of MRD-codes Lunardon-Trombetti-Zhou 2017, JACO For two equivalent linear metric codes their right (resp. left) idealisers are also equivalent. Let C be a linear MRD code in F m × n with d > 1. q If m ≤ n then L ( C ) is a finite field. Hence | L ( C ) | ≤ q m . If n ≤ m then R ( C ) is a finite field. Hence | R ( C ) | ≤ q n . If C is a linear MRD code in F n × n with d > 1 then the left q and the right idealisers of C are both finite fields.

  11. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Left and Right idealiser of MRD-codes Lunardon-Trombetti-Zhou 2017, JACO For two equivalent linear metric codes their right (resp. left) idealisers are also equivalent. Let C be a linear MRD code in F m × n with d > 1. q If m ≤ n then L ( C ) is a finite field. Hence | L ( C ) | ≤ q m . If n ≤ m then R ( C ) is a finite field. Hence | R ( C ) | ≤ q n . If C is a linear MRD code in F n × n with d > 1 then the left q and the right idealisers of C are both finite fields.

  12. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Left and Right idealiser of MRD-codes Lunardon-Trombetti-Zhou 2017, JACO For two equivalent linear metric codes their right (resp. left) idealisers are also equivalent. Let C be a linear MRD code in F m × n with d > 1. q If m ≤ n then L ( C ) is a finite field. Hence | L ( C ) | ≤ q m . If n ≤ m then R ( C ) is a finite field. Hence | R ( C ) | ≤ q n . If C is a linear MRD code in F n × n with d > 1 then the left q and the right idealisers of C are both finite fields. dim L ( C ) ( C ) dim R ( C ) ( C )

  13. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim First Examples of linear MRD-codes P. Delsarte : Bilinear forms over a finite field, with applications to coding theory, J. Comb. Theory Ser. A (1978)

  14. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim First Examples of linear MRD-codes P. Delsarte : Bilinear forms over a finite field, with applications to coding theory, J. Comb. Theory Ser. A (1978) E. Gabidulin : Theory of codes with maximum rank distance, Probl. Inf. Transm. (1985)

  15. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim First Examples of linear MRD-codes P. Delsarte : Bilinear forms over a finite field, with applications to coding theory, J. Comb. Theory Ser. A (1978) E. Gabidulin : Theory of codes with maximum rank distance, Probl. Inf. Transm. (1985) A. Kshevetskiy, E. Gabidulin : The new construction of rank codes, Proceedings ISIT, (2005)

  16. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Gabidulin MRD-codes G k = { f ( x ) = a 0 x + a 1 x q + . . . a k − 1 x q ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } , n , k ∈ Z + k < n

  17. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Gabidulin MRD-codes G k = { f ( x ) = a 0 x + a 1 x q + . . . a k − 1 x q ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } , n , k ∈ Z + k < n dim F q Ker f ≤ k − 1

  18. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Gabidulin MRD-codes G k = { f ( x ) = a 0 x + a 1 x q + . . . a k − 1 x q ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } , n , k ∈ Z + k < n dim F q Ker f ≤ k − 1 ⇒ dim F q Im f ≥ n − k + 1

  19. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Gabidulin MRD-codes G k = { f ( x ) = a 0 x + a 1 x q + . . . a k − 1 x q ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } , n , k ∈ Z + k < n dim F q Ker f ≤ k − 1 ⇒ dim F q Im f ≥ n − k + 1 M f ∈ F n × n B → F q -basis of F q n q matrix associated with f w.r.t. B

  20. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Gabidulin MRD-codes G k = { f ( x ) = a 0 x + a 1 x q + . . . a k − 1 x q ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } , n , k ∈ Z + k < n dim F q Ker f ≤ k − 1 ⇒ dim F q Im f ≥ n − k + 1 M f ∈ F n × n B → F q -basis of F q n q matrix associated with f w.r.t. B C G k = { M f : f ∈ G k } ⊆ F n × n , q

  21. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Gabidulin MRD-codes G k = { f ( x ) = a 0 x + a 1 x q + . . . a k − 1 x q ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } , n , k ∈ Z + k < n dim F q Ker f ≤ k − 1 ⇒ dim F q Im f ≥ n − k + 1 M f ∈ F n × n B → F q -basis of F q n q matrix associated with f w.r.t. B C G k = { M f : f ∈ G k } ⊆ F n × n , q C G k Gabidulin MRD-code [ n × n , kn , n − k + 1 ] F q

  22. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Gabidulin MRD-codes G k = { f ( x ) = a 0 x + a 1 x q + · · · + a k − 1 x q ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } , n , k ∈ Z + k < n

  23. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Gabidulin MRD-codes G k = { f ( x ) = a 0 x + a 1 x q + · · · + a k − 1 x q ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } , n , k ∈ Z + k < n U ⊆ F q n , dim F q U = m ≤ n , B U basis of U

  24. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Gabidulin MRD-codes G k = { f ( x ) = a 0 x + a 1 x q + · · · + a k − 1 x q ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } , n , k ∈ Z + k < n U ⊆ F q n , dim F q U = m ≤ n , B U basis of U C G k ( U ) = { M f | U : f ∈ G k } ⊆ F n × m , q

  25. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Gabidulin MRD-codes G k = { f ( x ) = a 0 x + a 1 x q + · · · + a k − 1 x q ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } , n , k ∈ Z + k < n U ⊆ F q n , dim F q U = m ≤ n , B U basis of U C G k ( U ) = { M f | U : f ∈ G k } ⊆ F n × m , q C G k ( U ) Gabidulin MRD-code [ n × m , kn , n − k + 1 ] F q

  26. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Gabidulin MRD-codes G k = { f ( x ) = a 0 x + a 1 x q + · · · + a k − 1 x q ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } , n , k ∈ Z + k < n U ⊆ F q n , dim F q U = m ≤ n , B U basis of U C G k ( U ) = { M f | U : f ∈ G k } ⊆ F n × m , q C G k ( U ) Gabidulin MRD-code [ n × m , kn , n − k + 1 ] F q C G k ( U ) T Gabidulin MRD-code [ m × n , kn , n − k + 1 ] F q

  27. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Generalised Gabidulin MRD-codes G k , s = { f ( x ) = a 0 x + a 1 x q s + · · · + a k − 1 x q s ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } , n , k , s ∈ Z + , k < n , gcd ( n , s ) = 1

  28. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Generalised Gabidulin MRD-codes G k , s = { f ( x ) = a 0 x + a 1 x q s + · · · + a k − 1 x q s ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } , n , k , s ∈ Z + , k < n , gcd ( n , s ) = 1 C G k , s = { M f : f ∈ G k } ⊆ F n × n , q

  29. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Generalised Gabidulin MRD-codes G k , s = { f ( x ) = a 0 x + a 1 x q s + · · · + a k − 1 x q s ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } , n , k , s ∈ Z + , k < n , gcd ( n , s ) = 1 C G k , s = { M f : f ∈ G k } ⊆ F n × n , q C G k , s Generalised Gabidulin MRD-code [ n × n , kn , n − k + 1 ] F q

  30. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Generalised Gabidulin MRD-codes G k , s = { f ( x ) = a 0 x + a 1 x q s + · · · + a k − 1 x q s ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } , n , k , s ∈ Z + , k < n , gcd ( n , s ) = 1 C G k , s = { M f : f ∈ G k } ⊆ F n × n , q C G k , s Generalised Gabidulin MRD-code [ n × n , kn , n − k + 1 ] F q C G k , s ( U ) Generalised Gabidulin MRD-code [ n × m , kn , n − k + 1 ] F q C G k , s ( U ) T Generalised Gabidulin MRD-code [ m × n , kn , n − k + 1 ] F q

  31. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Linearized polynomials F n × n q

  32. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Linearized polynomials F n × n q ↓ End ( F q n , F q )

  33. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Linearized polynomials F n × n q ↓ End ( F q n , F q ) ↓ L n , q = { f ( x ) = a 0 x + a 1 x q + . . . a n − 1 x q ( n − 1 ) : a 0 , a 1 , . . . , a n − 1 ∈ F q n }

  34. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Linearized polynomials F n × n q ↓ End ( F q n , F q ) ↓ L n , q = { f ( x ) = a 0 x + a 1 x q + . . . a n − 1 x q ( n − 1 ) : a 0 , a 1 , . . . , a n − 1 ∈ F q n } ( F n × n ( L n , q , + , ◦ ) ≃ , + , · ) q

  35. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Linearized polynomials F n × n q ↓ End ( F q n , F q ) ↓ L n , q = { f ( x ) = a 0 x + a 1 x q + . . . a n − 1 x q ( n − 1 ) : a 0 , a 1 , . . . , a n − 1 ∈ F q n } ( F n × n ( L n , q , + , ◦ ) ≃ , + , · ) q composition modulo x q n − x ◦ →

  36. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Linearized polynomials C , C ′ ⊆ L n , q equivalent MRD-codes

  37. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Linearized polynomials C , C ′ ⊆ L n , q equivalent MRD-codes C ′ = { g ◦ f σ ◦ h : f ∈ C} f , g permutation q -polynomials, σ ∈ Aut ( F q )

  38. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Linearized polynomials C , C ′ ⊆ L n , q equivalent MRD-codes C ′ = { g ◦ f σ ◦ h : f ∈ C} f , g permutation q -polynomials, σ ∈ Aut ( F q ) C ⊆ L n , q MRD-code

  39. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Linearized polynomials C , C ′ ⊆ L n , q equivalent MRD-codes C ′ = { g ◦ f σ ◦ h : f ∈ C} f , g permutation q -polynomials, σ ∈ Aut ( F q ) C ⊆ L n , q MRD-code L ( C ) = { g ∈ L n , q : g ◦ f ∈ C for all f ∈ C} Left idealiser of C

  40. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Linearized polynomials C , C ′ ⊆ L n , q equivalent MRD-codes C ′ = { g ◦ f σ ◦ h : f ∈ C} f , g permutation q -polynomials, σ ∈ Aut ( F q ) C ⊆ L n , q MRD-code L ( C ) = { g ∈ L n , q : g ◦ f ∈ C for all f ∈ C} Left idealiser of C R ( C ) = { h ∈ L n , q : f ◦ h ∈ C for all f ∈ C} Right idealiser of C

  41. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Linearized polynomials G k , s = { f ( x ) = a 0 x + a 1 x q s + . . . a k − 1 x q s ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } n , k , s ∈ Z + , k < n , gcd ( n , s ) = 1 G k , s Generalised Gabidulin MRD-code [ n × n , kn , n − k + 1 ] F q

  42. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Linearized polynomials G k , s = { f ( x ) = a 0 x + a 1 x q s + . . . a k − 1 x q s ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } n , k , s ∈ Z + , k < n , gcd ( n , s ) = 1 G k , s Generalised Gabidulin MRD-code [ n × n , kn , n − k + 1 ] F q

  43. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Linearized polynomials G k , s = { f ( x ) = a 0 x + a 1 x q s + . . . a k − 1 x q s ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } n , k , s ∈ Z + , k < n , gcd ( n , s ) = 1 G k , s Generalised Gabidulin MRD-code [ n × n , kn , n − k + 1 ] F q F q n = { τ α ( x ) = α x : α ∈ F q n }

  44. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Linearized polynomials G k , s = { f ( x ) = a 0 x + a 1 x q s + . . . a k − 1 x q s ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } n , k , s ∈ Z + , k < n , gcd ( n , s ) = 1 G k , s Generalised Gabidulin MRD-code [ n × n , kn , n − k + 1 ] F q F q n = { τ α ( x ) = α x : α ∈ F q n } f ◦ τ α ∈ G k , s , τ α ◦ f ∈ G k , s for all f ∈ G k , s , τ α ∈ F q n

  45. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Linearized polynomials G k , s = { f ( x ) = a 0 x + a 1 x q s + . . . a k − 1 x q s ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } n , k , s ∈ Z + , k < n , gcd ( n , s ) = 1 G k , s Generalised Gabidulin MRD-code [ n × n , kn , n − k + 1 ] F q F q n = { τ α ( x ) = α x : α ∈ F q n } f ◦ τ α ∈ G k , s , τ α ◦ f ∈ G k , s for all f ∈ G k , s , τ α ∈ F q n L ( G k , s ) = F q n R ( G k , s ) = F q n

  46. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Linearized polynomials G k , s = { f ( x ) = a 0 x + a 1 x q s + . . . a k − 1 x q s ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } n , k , s ∈ Z + , k < n , gcd ( n , s ) = 1 G k , s Generalised Gabidulin MRD-code [ n × n , kn , n − k + 1 ] F q F q n = { τ α ( x ) = α x : α ∈ F q n } f ◦ τ α ∈ G k , s , τ α ◦ f ∈ G k , s for all f ∈ G k , s , τ α ∈ F q n L ( G k , s ) = F q n R ( G k , s ) = F q n

  47. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Linearized polynomials G k , s = { f ( x ) = a 0 x + a 1 x q s + . . . a k − 1 x q s ( k − 1 ) : a 0 , a 1 , . . . , a k − 1 ∈ F q n } n , k , s ∈ Z + , k < n , gcd ( n , s ) = 1 G k , s Generalised Gabidulin MRD-code [ n × n , kn , n − k + 1 ] F q F q n = { τ α ( x ) = α x : α ∈ F q n } f ◦ τ α ∈ G k , s , τ α ◦ f ∈ G k , s for all f ∈ G k , s , τ α ∈ F q n L ( G k , s ) = F q n R ( G k , s ) = F q n G k , s F q n -linear MRD-code

  48. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Finite presemifields J. De La Cruz, Kiermaier, Wassermann, Willem : Algebraic structures of MRD codes, Adv. Math. Commun. (2016)

  49. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Finite presemifields J. De La Cruz, Kiermaier, Wassermann, Willem : Algebraic structures of MRD codes, Adv. Math. Commun. (2016) J. Sheekey: A new family of linear maximum rank distance codes, Adv. Math. Commun. (2016)

  50. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Finite presemifields J. De La Cruz, Kiermaier, Wassermann, Willem : Algebraic structures of MRD codes, Adv. Math. Commun. (2016) J. Sheekey: A new family of linear maximum rank distance codes, Adv. Math. Commun. (2016) C F q -linear MRD-code, [ n × n , n , n ] F q � S C presemifield of order q n with left nucleus containing F q

  51. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Finite presemifields J. De La Cruz, Kiermaier, Wassermann, Willem : Algebraic structures of MRD codes, Adv. Math. Commun. (2016) J. Sheekey: A new family of linear maximum rank distance codes, Adv. Math. Commun. (2016) C F q -linear MRD-code, [ n × n , n , n ] F q � π S C semifield plane of order q n

  52. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Finite presemifields J. De La Cruz, Kiermaier, Wassermann, Willem : Algebraic structures of MRD codes, Adv. Math. Commun. (2016) J. Sheekey: A new family of linear maximum rank distance codes, Adv. Math. Commun. (2016) C F q -linear MRD-code, [ n × n , n , n ] F q � π S C semifield plane of order q n G 1 , s → S G 1 , s isotopic to F q n

  53. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Finite presemifields J. De La Cruz, Kiermaier, Wassermann, Willem : Algebraic structures of MRD codes, Adv. Math. Commun. (2016) J. Sheekey: A new family of linear maximum rank distance codes, Adv. Math. Commun. (2016) C F q -linear MRD-code, [ n × n , n , n ] F q � π S C semifield plane of order q n G 1 , s → π S G 1 , s Desarguesian plane

  54. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Generalized Twisted Gabidulin Codes Sheekey, 2016 H k , s ( η, h ) = { f ( x ) = a 0 x + a 1 x q s + · · · + a k − 1 x q s ( k − 1 ) + η a q h 0 x q sk : a i ∈ F q n } n , k , s ∈ Z + , N q ( η ) � = ( − 1 ) nk k < n , gcd ( n , s ) = 1,

  55. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Generalized Twisted Gabidulin Codes Sheekey, 2016 H k , s ( η, h ) = { f ( x ) = a 0 x + a 1 x q s + · · · + a k − 1 x q s ( k − 1 ) + η a q h 0 x q sk : a i ∈ F q n } n , k , s ∈ Z + , N q ( η ) � = ( − 1 ) nk k < n , gcd ( n , s ) = 1,

  56. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Generalized Twisted Gabidulin Codes Sheekey, 2016 H k , s ( η, h ) = { f ( x ) = a 0 x + a 1 x q s + · · · + a k − 1 x q s ( k − 1 ) + η a q h 0 x q sk : a i ∈ F q n } n , k , s ∈ Z + , N q ( η ) � = ( − 1 ) nk k < n , gcd ( n , s ) = 1, H k , s ( η, h ) MRD-code [ n × n , kn , n − k + 1 ] F q

  57. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Generalized Twisted Gabidulin Codes Sheekey, 2016 H k , s ( η, h ) = { f ( x ) = a 0 x + a 1 x q s + · · · + a k − 1 x q s ( k − 1 ) + η a q h 0 x q sk : a i ∈ F q n } n , k , s ∈ Z + , N q ( η ) � = ( − 1 ) nk k < n , gcd ( n , s ) = 1, H k , s ( η, h ) MRD-code [ n × n , kn , n − k + 1 ] F q H k , s ( 0 , h ) = G k , s

  58. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Generalized Twisted Gabidulin Codes Sheekey, 2016 H k , s ( η, h ) = { f ( x ) = a 0 x + a 1 x q s + · · · + a k − 1 x q s ( k − 1 ) + η a q h 0 x q sk : a i ∈ F q n } n , k , s ∈ Z + , N q ( η ) � = ( − 1 ) nk k < n , gcd ( n , s ) = 1, H k , s ( η, h ) MRD-code [ n × n , kn , n − k + 1 ] F q H k , s ( 0 , h ) = G k , s a 0 x + η a q h 0 x q s H 1 , s ( η, h ) → Generalized twisted field

  59. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Generalized Twisted Gabidulin Codes Sheekey, 2016 H k , s ( η, h ) = { f ( x ) = a 0 x + a 1 x q s + · · · + a k − 1 x q s ( k − 1 ) + η a q h 0 x q sk : a i ∈ F q n } n , k , s ∈ Z + , N q ( η ) � = ( − 1 ) nk k < n , gcd ( n , s ) = 1, H k , s ( η, h ) MRD-code [ n × n , kn , n − k + 1 ] F q H k , s ( 0 , h ) = G k , s a 0 x + η a q h 0 x q s H 1 , s ( η, h ) → Generalized twisted field H 2 ( η, 1 ) K. Otal, F. Özbudak : Explicit Construction of Some Non-Gabidulin Linear Maximum Rank Distance Codes, Adv. Math. Commun. (2016)

  60. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Generalized Twisted Gabidulin Codes Sheekey 2016/ Lunardon-Trombetti-Zhou, ArXiv (2015)

  61. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Generalized Twisted Gabidulin Codes Sheekey 2016/ Lunardon-Trombetti-Zhou, ArXiv (2015) If η � = 0, then H k , s ( η, h ) �≃ G k , s unless k ∈ { 1 , n − 1 } and h ∈ { 0 , 1 } .

  62. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Generalized Twisted Gabidulin Codes Sheekey 2016/ Lunardon-Trombetti-Zhou, ArXiv (2015) If η � = 0, then H k , s ( η, h ) �≃ G k , s unless k ∈ { 1 , n − 1 } and h ∈ { 0 , 1 } . Lunardon-Trombetti-Zhou (2017),JACO

  63. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Generalized Twisted Gabidulin Codes Sheekey 2016/ Lunardon-Trombetti-Zhou, ArXiv (2015) If η � = 0, then H k , s ( η, h ) �≃ G k , s unless k ∈ { 1 , n − 1 } and h ∈ { 0 , 1 } . Lunardon-Trombetti-Zhou (2017),JACO H k , s ( η, h )

  64. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Generalized Twisted Gabidulin Codes Sheekey 2016/ Lunardon-Trombetti-Zhou, ArXiv (2015) If η � = 0, then H k , s ( η, h ) �≃ G k , s unless k ∈ { 1 , n − 1 } and h ∈ { 0 , 1 } . Lunardon-Trombetti-Zhou (2017),JACO H k , s ( η, h ) If η = 0, then H k , s ( 0 , h ) = G k , s and L ( G k , s ) = R ( G k , s ) ≃ F q n .

  65. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Generalized Twisted Gabidulin Codes Sheekey 2016/ Lunardon-Trombetti-Zhou, ArXiv (2015) If η � = 0, then H k , s ( η, h ) �≃ G k , s unless k ∈ { 1 , n − 1 } and h ∈ { 0 , 1 } . Lunardon-Trombetti-Zhou (2017),JACO H k , s ( η, h ) If η = 0, then H k , s ( 0 , h ) = G k , s and L ( G k , s ) = R ( G k , s ) ≃ F q n . If η � = 0 and 1 < k < n − 1, then L ( H k , s ( η, h )) ≃ F q gcd ( n , h ) and R ( H k , s ( η, h )) ≃ F q gcd ( n , sk − h ) .

  66. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Subfamilies of H H = {H k , s ( η, h ) ⊆ L n , q }

  67. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Subfamilies of H H = {H k , s ( η, h ) ⊆ L n , q } G = {G k , s ⊆ L n , q }

  68. Linear MRD-codes Generalized Gabidulin Codes and linearized polynomials Generalized Twisted Gabidulin Codes MRD-codes-Maxim Subfamilies of H H = {H k , s ( η, h ) ⊆ L n , q } G = {G k , s ⊆ L n , q } H L = {C ∈ H : L ( C ) ≃ F q n } H R = {C ∈ H : R ( C ) ≃ F q n }

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend