some aspects in the numerics of nonlinear acoustics time
play

Some Aspects in the Numerics of Nonlinear Acoustics: Time - PowerPoint PPT Presentation

Some Aspects in the Numerics of Nonlinear Acoustics: Time Integration and Open Domain Problems Barbara Kaltenbacher Alpen-Adria-Universit at Klagenfurt RICAM Special Semester on Computational Methods in Science and Engineering Workshop 1:


  1. Some Aspects in the Numerics of Nonlinear Acoustics: Time Integration and Open Domain Problems Barbara Kaltenbacher Alpen-Adria-Universit¨ at Klagenfurt RICAM Special Semester on Computational Methods in Science and Engineering Workshop 1: Analysis and Numerics of Acoustic and Electromagnetic Problems

  2. Some Aspects in the Numerics of Nonlinear Acoustics: Time Integration and Open Domain Problems Barbara Kaltenbacher Alpen-Adria-Universit¨ at Klagenfurt RICAM Special Semester on Computational Methods in Science and Engineering Workshop 1: Analysis and Numerics of Acoustic and Electromagnetic Problems joint work with: Rainer Brunnhuber, AAU, Vanja Nikoli´ c, AAU, Christian Clason, U Duisburg-Essen, Manfred Kaltenbacher, TU Vienna, Irena Lasiecka, U Memphis, Richard Marchand, Slippery Rock U, Gunther Peichl, U Graz, Maria K. Pospieszalska, La Jolla Institute, Petronela Radu, U Nebraska at Lincoln, Igor Shevchenko, UCL, Mechthild Thalhammer, U Innsbruck Mathematics of Nonlinear Acoustics

  3. Nonlinear Acoustic Wave Propagation 1

  4. Nonlinear Acoustic Wave Propagation 1

  5. Applications of High Intensity Focused Ultrasound HIFU thermotherapy lithotripsy welding cleaning 2

  6. Outline models time integration nonreflecting boundary conditions 3

  7. modeling 4

  8. Physical Principles main physical quantities: acoustic particle velocity � v ; acoustic pressure p ; mass density ̺ ; decomposition into mean and fluctuating part: v = � v 0 + � v ∼ = � p = p 0 + p ∼ , ̺ = ̺ 0 + ̺ ∼ � v ∼ , 5

  9. Physical Principles main physical quantities: acoustic particle velocity � v ; acoustic pressure p ; mass density ̺ ; decomposition into mean and fluctuating part: v = � v 0 + � v ∼ = � p = p 0 + p ∼ , ̺ = ̺ 0 + ̺ ∼ � v ∼ , governing equations: Navier Stokes equation (under the assumption ∇ × � v = 0) � � � 4 µ V � � v t + ∇ ( � v · � v ) + ∇ p = + ζ V ∆ � ̺ v 3 equation of continuity ̺ t + ∇ · ( ̺� v ) = 0 state equation � 1 � ̺ ∼ = 1 1 B κ − 1 2 Ap ∼ 2 − c 2 p ∼ − p ∼ t ̺ 0 c 4 ̺ 0 c 4 c V c p 5

  10. Derivation of Wave Equation main physical quantities: � v = � p = p 0 + p ∼ , ∇ p 0 = 0 , ̺ = ̺ 0 + ̺ ∼ , ̺ 0 t = 0 v ∼ , 6

  11. Derivation of Wave Equation main physical quantities: � v = � p = p 0 + p ∼ , ∇ p 0 = 0 , ̺ = ̺ 0 + ̺ ∼ , ̺ 0 t = 0 v ∼ , governing equations: � � � 4 µ V � v t + ∇ ( � v · � v ) + ∇ p = + ζ V ∆ � ̺ � v 3 ̺ t + ∇ · ( ̺� v ) = 0 � 1 � 1 − 1 ̺ ∼ = p ∼ B κ 2 Ap 2 c 2 − ∼ − p ∼ t ̺ 0 c 4 ̺ 0 c 4 c V c p 6

  12. Derivation of Wave Equation c 2 and ̺ 0 are known parameters main physical quantities: � v = � p = p 0 + p ∼ , ∇ p 0 = 0 , ̺ = ̺ 0 + ̺ ∼ , ̺ 0 t = 0 v ∼ , governing equations: nht . . . nonlinear and higher order terms � � � 4 µ V � v t + ∇ ( � v · � v ) + ∇ p = + ζ V ∆ � ̺ � v 3 ̺ t + ∇ · ( ̺� v ) = 0 � 1 � 1 − 1 ̺ ∼ = p ∼ B κ 2 Ap 2 c 2 − ∼ − p ∼ t ̺ 0 c 4 ̺ 0 c 4 c V c p 6

  13. Derivation of Wave Equation c 2 and ̺ 0 are known parameters main physical quantities: � v = � p = p 0 + p ∼ , ∇ p 0 = 0 , ̺ = ̺ 0 + ̺ ∼ , ̺ 0 t = 0 v ∼ , governing equations: nht . . . nonlinear and higher order terms � � � 4 µ V � v t + ∇ ( � v · � v ) + ∇ p = + ζ V ∆ � ̺ � v 3 v t + ∇ p ∼ = nht ̺ 0 � ̺ t + ∇ · ( ̺� v ) = 0 � 1 � 1 − 1 ̺ ∼ = p ∼ B κ 2 Ap 2 c 2 − ∼ − p ∼ t ̺ 0 c 4 ̺ 0 c 4 c V c p 6

  14. Derivation of Wave Equation c 2 and ̺ 0 are known parameters main physical quantities: � v = � p = p 0 + p ∼ , ∇ p 0 = 0 , ̺ = ̺ 0 + ̺ ∼ , ̺ 0 t = 0 v ∼ , governing equations: nht . . . nonlinear and higher order terms � � � 4 µ V � v t + ∇ ( � v · � v ) + ∇ p = + ζ V ∆ � ̺ � v 3 v t + ∇ p ∼ = nht ̺ 0 � ̺ t + ∇ · ( ̺� v ) = 0 ̺ ∼ t + ̺ 0 ∇ · � v = nht � 1 � 1 − 1 ̺ ∼ = p ∼ B κ 2 Ap 2 c 2 − ∼ − p ∼ t ̺ 0 c 4 ̺ 0 c 4 c V c p 6

  15. Derivation of Wave Equation c 2 and ̺ 0 are known parameters main physical quantities: � v = � p = p 0 + p ∼ , ∇ p 0 = 0 , ̺ = ̺ 0 + ̺ ∼ , ̺ 0 t = 0 v ∼ , governing equations: nht . . . nonlinear and higher order terms � � � 4 µ V � v t + ∇ ( � v · � v ) + ∇ p = + ζ V ∆ � ̺ � v 3 v t + ∇ p ∼ = nht ̺ 0 � ̺ t + ∇ · ( ̺� v ) = 0 ̺ ∼ t + ̺ 0 ∇ · � v = nht � 1 � 1 − 1 ̺ ∼ = p ∼ B κ 2 Ap 2 c 2 − ∼ − p ∼ t ̺ 0 c 4 ̺ 0 c 4 c V c p ̺ ∼ = 1 c 2 p ∼ + nht 6

  16. Derivation of Wave Equation v t + ∇ p ∼ = nht ̺ 0 � ̺ ∼ t + ̺ 0 ∇ · � v = nht ̺ ∼ = 1 c 2 p ∼ + nht 7

  17. Derivation of Wave Equation v t + ∇ p ∼ = nht ̺ 0 � ̺ ∼ t + ̺ 0 ∇ · � v = nht ̺ ∼ = 1 c 2 p ∼ + nht insert line 3 into line 2 to eliminate ̺ ∼ . . . 7

  18. Derivation of Wave Equation ̺ 0 � v t + ∇ p ∼ = nht 1 c 2 p ∼ t + ̺ 0 ∇ · � v = nht 8

  19. Derivation of Wave Equation ̺ 0 � v t + ∇ p ∼ = nht 1 c 2 p ∼ t + ̺ 0 ∇ · � v = nht (This is an evolution with a nice skew-symmetric structure, since ∇· = −∇ ∗ 0 !) 8

  20. Derivation of Wave Equation v t + ∇ p ∼ = nht ̺ 0 � 1 c 2 p ∼ t + ̺ 0 ∇ · � v = nht 9

  21. Derivation of Wave Equation − ∇ · v t + ∇ p ∼ = nht ̺ 0 � ∂ 1 c 2 p ∼ t + ̺ 0 ∇ · � v = nht ∂ t 9

  22. Derivation of Wave Equation − ∇ · v t + ∇ p ∼ = nht ̺ 0 � ∂ 1 c 2 p ∼ t + ̺ 0 ∇ · � v = nht ∂ t ————————— 1 c 2 p ∼ tt − ∆ p ∼ = nht 9

  23. Classical Models of Nonlinear Acoustics I Kuznetsov’s equation [Lesser & Seebass 1968, Kuznetsov 1971] � � B p ∼ tt − c 2 ∆ p ∼ − b ∆ p ∼ t = − 2 A ̺ 0 c 2 p 2 v | 2 ∼ + ̺ 0 | � tt where ̺ 0 � v t = −∇ p for the particle velocity � v and the pressure p , i.e., � 2 A c 2 ( ψ t ) 2 + |∇ ψ | 2 � B ψ tt − c 2 ∆ ψ − b ∆ ψ t = − t since ∇ × � v = 0 hence � v = −∇ ψ for a velocity potential ψ Westervelt equation [Westervelt 1963] � � 1 1 + B p ∼ tt − c 2 ∆ p ∼ − b ∆ p ∼ t = − p 2 ∼ tt ̺ 0 c 2 2 A v | 2 ≈ 1 c 2 ( p ∼ t ) 2 via ̺ 0 | � 10

  24. Classical Models of Nonlinear Acoustics II Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation [Zabolotskaya & Khokhlov 1969] 2 cp ∼ xt − c 2 ∆ yz p ∼ − b β a ̺ 0 c 2 p 2 c 2 p ∼ ttt = ∼ tt x . . . direction of sound propagation Burgers’ equation [Burgers 1974] p ∼ t − b β a 2 c 2 p ∼ ττ = ̺ 0 c 3 p ∼ p ∼ τ τ = t − x c . . . retarded time 11

  25. Advanced Models of Nonlinear Acoustics (Examples) Blackstock-Crighton equation [Brunnhuber & Jordan 2016], [Blackstock 1963], [Crighton 1979] � � � � ν ∆ ψ tt + (1+ B / (2 A )) ν ν B ∆ 2 ψ t − c 2 ∆ ψ t + c 2 ν Pr∆ 2 ψ ψ ttt − b + b − Pr Pr 2 A Pr 2 Ac 2 ( ψ 2 t ) + |∇ ψ | 2 � � B = − tt 12

  26. Advanced Models of Nonlinear Acoustics (Examples) Blackstock-Crighton equation [Brunnhuber & Jordan 2016], [Blackstock 1963], [Crighton 1979] � � � � ν ∆ ψ tt + (1+ B / (2 A )) ν ν B ∆ 2 ψ t − c 2 ∆ ψ t + c 2 ν Pr∆ 2 ψ ψ ttt − b + b − Pr Pr 2 A Pr 2 Ac 2 ( ψ 2 t ) + |∇ ψ | 2 � � B = − � B � tt � � t ) + |∇ ψ | 2 ψ tt − c 2 ∆ ψ − b ∆ ψ t 2 Ac 2 ( ψ 2 ( ∂ t − a ∆) − r ∆ ψ t = − tt ν a = Pr. . . thermal conductivity 12

  27. Advanced Models of Nonlinear Acoustics (Examples) Blackstock-Crighton equation [Brunnhuber & Jordan 2016], [Blackstock 1963], [Crighton 1979] � � � � ν ∆ ψ tt + (1+ B / (2 A )) ν ν B ∆ 2 ψ t − c 2 ∆ ψ t + c 2 ν Pr∆ 2 ψ ψ ttt − b + b − Pr Pr 2 A Pr 2 Ac 2 ( ψ 2 t ) + |∇ ψ | 2 � � B = − � B � tt � � t ) + |∇ ψ | 2 ψ tt − c 2 ∆ ψ − b ∆ ψ t 2 Ac 2 ( ψ 2 ( ∂ t − a ∆) − r ∆ ψ t = − tt ν a = Pr. . . thermal conductivity Jordan-Moore-Gibson-Thompson equation [Jordan 2009, 2014], [Christov 2009], [Straughan 2010] � B � 2 Ac 2 ( ψ t ) 2 + |∇ ψ | 2 τψ ttt + ψ tt − c 2 ∆ ψ − b ∆ ψ t = − t τ . . . relaxation time 12

  28. Advanced Models of Nonlinear Acoustics (Examples) Blackstock-Crighton equation [Brunnhuber & Jordan 2016], [Blackstock 1963], [Crighton 1979] � � � � ν ∆ ψ tt + (1+ B / (2 A )) ν ν B ∆ 2 ψ t − c 2 ∆ ψ t + c 2 ν Pr∆ 2 ψ ψ ttt − b + b − Pr Pr 2 A Pr 2 Ac 2 ( ψ 2 t ) + |∇ ψ | 2 � � B = − � B � tt � � t ) + |∇ ψ | 2 ψ tt − c 2 ∆ ψ − b ∆ ψ t 2 Ac 2 ( ψ 2 ( ∂ t − a ∆) − r ∆ ψ t = − tt ν a = Pr. . . thermal conductivity Jordan-Moore-Gibson-Thompson equation [Jordan 2009, 2014], [Christov 2009], [Straughan 2010] � B � 2 Ac 2 ( ψ t ) 2 + |∇ ψ | 2 τψ ttt + ψ tt − c 2 ∆ ψ − b ∆ ψ t = − t τ . . . relaxation time cf. Kuznetsov’s equation: � B � ψ tt − c 2 ∆ ψ − b ∆ ψ t = − 2 Ac 2 ( ψ 2 t ) + |∇ ψ | 2 t 12

  29. Some Asymptotics Blackstock-Crighton equation: � � � 2 ) + |∇ ψ a | 2 � t + ac 2 ∆ 2 ψ a = − tt − c 2 ∆ ψ a − ( a + b )∆ ψ a t + ad ∆ 2 ψ a ψ a 2 Ac 2 ( ψ a B t t tt Kuznetsov’s equation: � t ) + |∇ ψ | 2 � ψ tt − c 2 ∆ ψ − b ∆ ψ t = − 2 Ac 2 ( ψ 2 B t 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend