soliton equations in 2 1 dimensions deformations of
play

SOLITON EQUATIONS IN 2+1 DIMENSIONS: DEFORMATIONS OF DISPERSIONLESS - PowerPoint PPT Presentation

SOLITON EQUATIONS IN 2+1 DIMENSIONS: DEFORMATIONS OF DISPERSIONLESS LIMITS Eugene Ferapontov Department of Mathematical Sciences, Loughborough University, UK E.V.Ferapontov@lboro.ac.uk Collaboration: A Moro, V Novikov Enigma Workshop


  1. SOLITON EQUATIONS IN 2+1 DIMENSIONS: DEFORMATIONS OF DISPERSIONLESS LIMITS Eugene Ferapontov Department of Mathematical Sciences, Loughborough University, UK E.V.Ferapontov@lboro.ac.uk Collaboration: A Moro, V Novikov Enigma Workshop ‘Geometry and Integrability’ Obergurgl, 13-20 December 2008 1

  2. KP equation ( u t − uu x − u xxx ) x = u yy Perturbative symmetry approach ( u t − εuu x − u xxx ) x = u yy Dispersive deformation u t − uu x − ε 2 u xxx � � x = u yy Program of classification of (2+1)D integrable systems: • Classify (2+1)D dispersionless systems which may (potentially) arise as dispersionless limits of integrable soliton equations (method of hydrodynamic reductions) • Understand how to add dispersive corrections (deformation of hydrodynamic reductions) 2

  3. Plan: • The method of hydrodynamic reductions. Example of dKP • Classification of (2+1)D dispersionless integrable systems – Systems of hydrodynamic type – Hydrodynamic chains – Equations of the dispersionless Hirota type – Second order quasilinear PDEs • Dispersive deformations of dispersionless integrable systems • Classification of third order (2+1)D soliton equations with ‘simplest’ nonlocalities 3

  4. The method of hydrodynamic reductions Applies to quasilinear equations A ( u ) u x + B ( u ) u y + C ( u ) u t = 0 Consists of seeking N-phase solutions u = u ( R 1 , ..., R N ) The phases R i ( x, y, t ) are required to satisfy a pair of commuting equations R i y = µ i ( R ) R i R i t = λ i ( R ) R i x , x ∂ j µ i ∂ j λ i µ j − µ i = Commutativity conditions: λ j − λ i Definition A quasilinear system is said to be integrable if, for any number of phases N, it possesses infinitely many N-phase solutions parametrized by 2N arbitrary functions of one variable. 4

  5. Example of dKP ( u t − uu x ) x = u yy First order (hydrodynamic) form: u t − uu x = w y , u y = w x N -phase solutions: u = u ( R 1 , ..., R N ) , w = w ( R 1 , ..., R N ) where R i y = µ i ( R ) R i R i t = λ i ( R ) R i x , x Then λ i = u + ( µ i ) 2 ∂ i w = µ i ∂ i u, Equations for u ( R ) and µ i ( R ) (Gibbons-Tsarev system): ∂ j u ∂ i u∂ j u ∂ j µ i = µ j − µ i , ∂ i ∂ j u = 2 ( µ j − µ i ) 2 In involution! General solution depends on N arbitrary functions of one variable. 5

  6. Systems of hydrodynamic type in (2+1)D u t + A ( u ) u x + B ( u ) u y = 0 E. V. Ferapontov and K. R. Khusnutdinova, Double waves in multi-dimensional systems of hydrodynamic type: the necessary condition for integrability, Proc. Royal Soc. A 462 (2006) 1197-1219. E.V. Ferapontov, A. Moro and V.V. Sokolov, Hamiltonian systems of hydrodynamic type in 2+1 dimensions, Comm. Math. Phys. 285 , no. 1 (2009) 31–65. Nijenhuis tensor jk = V p k − V p p ( ∂ u j V p k − ∂ u k V p N i j ∂ u p V i k ∂ u p V i j − V i j ) Haantjes tensor pr V p k − N p k − N p j + N p H i jk = N i j V r jr V i p V r rk V i p V r jk V i r V r p ⇒ H ( V ) = 0 where V = ( A + kE ) − 1 ( B + lE ) . General case: Integrability = ⇒ H ( V ) = 0 . Hamiltonian case: Integrability ⇐ 6

  7. Hydrodynamic chains u t + V ( u ) u x = 0 E. V. Ferapontov and D. G. Marshall, Differential-geometric approach to the integrability of hydrodynamic chains: the Haantjes tensor, Math. Ann. 339 , no. 1 (2007) 61-99. Haantjes tensor H ( V ) well-defined! Conservative chains u 1 t = f ( u 1 , u 2 ) x , u 2 t = g ( u 1 , u 2 , u 3 ) x , u 3 t = h ( u 1 , u 2 , u 3 , u 4 ) x , ... Hamiltonian chains � ∂h � B d dx + d dxB t h ( u 1 , u 2 , u 3 ) u t = ∂ u , Generic case: h = ( u 3 + P ( u 1 , u 2 )) 1 / 3 where P is a cubic polynomial. 7

  8. Equations of the dispersionless Hirota type F ( u xx , u xy , u yy , u xt , u yt , u tt ) = 0 E.V. Ferapontov, L. Hadjikos and K.R. Khusnutdinova, Integrable equations of the dispersionless Hirota type and hypersurfaces in the Lagrangian Grassmannian, arXiv: 0705.1774 (2007). e u xx + e u yy = e u tt u tt = u xy + 1 6 η ( u xx ) u 2 xt u xt where η solves the Chazy equation. 21 -dimensional moduli space, equivalence group Sp (6 , R ) Geometry: hypersurfaces in the Lagrangian Grassmannian 8

  9. Second order quasilinear PDEs f 11 u xx + f 22 u yy + f 33 u tt + 2 f 12 u xy + 2 f 13 u xt + 2 f 23 u yt = 0 f ij depend on the first order derivatives u x , u y , u t only. P . A. Burovskii, E. V. Ferapontov and S. P . Tsarev, Second order quasilinear PDEs and conformal structures in projective space; arXiv:0802.2626v1, (2008). u xx + u yy − e u t u tt = 0 α℘ ′ ( u x ) − ℘ ′ ( u y ) u xy + β ℘ ′ ( u t ) − ℘ ′ ( u x ) u xt + γ ℘ ′ ( u y ) − ℘ ′ ( u t ) u yt = 0 ℘ ( u x ) ℘ ( u y ) ℘ ( u x ) ℘ ( u t ) ℘ ( u y ) ℘ ( u t ) 20 -dimensional moduli space, equivalence group SL (4 , R ) Geometry: conformal structures in projective space 9

  10. Dispersive deformations of dispersionless integrable systems E. V. Ferapontov and A. Moro, Dispersive deformations of hydrodynamic reductions of 2D dispersionless integrable systems, J. Phys. A: Math. Theor. 42 (2009) 035211, 15pp. � u t − uu x − ε 2 u xxx � x = u yy Look for deformed N-phase solutions in the form u = u ( R 1 , ..., R N )+ ε 2 ( . . . ) + ε 4 ( . . . ) + . . . where R i y = µ i ( R ) R i x + ε 2 ( . . . ) + ε 4 ( . . . ) + . . . R i t = λ i ( R ) R i x + ε 2 ( . . . ) + ε 4 ( . . . ) + . . . Here ( . . . ) are required to be polynomial and homogeneous in the derivatives of R i . Recall that λ i = u + ( µ i ) 2 , and µ i , u satisfy the Gibbons-Tsarev system. 10

  11. Deformations of one-phase reductions of dKP � u t − uu x − ε 2 u xxx � x = u yy Deformed one-phase reductions (modulo the Miura group can assume u = R ): R y = µR x � � µ ′ R xx + 1 2( µ ′′ − ( µ ′ ) 3 ) R 2 + ε 2 + O ( ε 4 ) x x R t =( µ 2 + R ) R x (2 µµ ′ + 1) R xx + ( µµ ′′ − µ ( µ ′ ) 3 + ( µ ′ ) 2 / 2) R 2 + ε 2 � � x + O ( ε 4 ) x Conjecture For any integrable system in (2+1)D, all hydrodynamic reductions of its dispersionless limit can be deformed into reductions of the dispersive counterpart. 11

  12. Generalized KP equation u t − uu x + ε ( A 1 u xx + A 2 u 2 x ) + ε 2 ( B 1 u xxx + B 2 u x u xx + B 3 u 3 x ) = w y w x = u y Require that all one-phase reductions can be deformed as w = w ( R )+ ε 2 ( . . . ) + ε 4 ( . . . ) + . . . u = R, where R y = µR x + ε 2 ( . . . ) + ε 4 ( . . . ) + . . . R t =( µ 2 + R ) R x + ε 2 ( . . . ) + ε 4 ( . . . ) + . . . w ′ = µ . This gives A 1 = A 2 = B 2 = B 3 = 0 , B 1 =const, = ⇒ KP 12

  13. Classification result: scalar third order (2+1)D soliton equations with simplest nonlocalities u t = ϕu x + ψu y + ηw y + ǫ ( ... ) + ǫ 2 ( ... ) , w x = u y here ϕ, ψ, η are functions of v and w , and ( . . . ) denote terms which are polynomial in the derivatives of v and w with respect to x and y of orders 2 and 3 , respectively. Here w = D − 1 x D y u is the nonlocality, no other non-local terms are allowed. • Classify integrable dispersionless systems of the form u t = ϕu x + ψu y + ηw y , w x = u y • Add dispersive corrections which inherit all hydrodynamic reductions (sufficient to consider 1-component reductions only) 13

  14. Classification of integrable dispersionless limits Integrability conditions, based on E.V. Ferapontov and K.R. Khusnutdinova, The characterization of 2-component (2+1)-dimensional integrable systems of hydrodynamic type, J. Phys. A: Math. Gen. 37 , no. 8 (2004) 2949–2963. ϕ uu = − ϕ 2 w + ψ u ϕ w − 2 ψ w ϕ u ϕ uw = η w ϕ u ϕ ww = η w ϕ w , , η η η ψ uu = − ϕ w ψ w + ψ u ψ w − 2 ϕ w η u + 2 η w ϕ u , ψ uw = η w ψ u , ψ ww = η w ψ w η η η η ww = η 2 η uu = − η w ( ϕ w − ψ u ) η uw = η w η u w , , η η η In involution, straightforward to solve: η = 1 , η = u, η = e w h ( u ) Conjecture For any ϕ, ψ, η one can reconstruct (non-uniquely) dispersive corrections which inherit all hydrodynamic reductions. Infinite series in ǫ are required in general. 14

  15. Non-uniqueness of dispersive corrections: VN and mVN equations Veselov-Novikov equation u t = ( uw ) y + ǫ 2 u yyy , w x = u y modified Veselov-Novikov equation � � u 2 u yy − 3 y u t = ( uw ) y + ǫ 2 , w x = u y 4 u y Dispersionless limit u t = ( uw ) y , w x = u y 15

  16. BKP and CKP equations u t − 5( u 2 + w ) u x − 5 uw x +5 w y + ε 2 ( uu xxx + w xxx + u xxx ) − ε 4 25 u xxxxx = 0 , w x = u y and 2 u xxx ) − ε 4 u t − 5( u 2 + w ) u x − 5 uw x +5 w y + ε 2 ( uu xxx + w xxx + 5 25 u xxxxx = 0 , w x = u y Dispersionless limit u t − 5( u 2 + w ) u x − 5 uw x + 5 w y , w x = u y 16

  17. New examples u t = ( βw + β 2 u 2 ) u x − 3 βuu y + w y + ǫ 2 [ B 3 ( u ) − 2 β 2 B 2 ( u ) u x ] here B = 2 β 2 uD x − 2 βD y . u t = 4 27 γ 2 u 3 u x + ( w + γu 2 ) u y + uw y + ǫ 2 [ B 3 ( u ) − 1 3 γu x B 2 ( u )] here B = 1 3 γuD x + D y . � 1 u 3 u x − 2 wu y + uw y − ǫ 2 u t = δ � u u xxx For δ = 0 it reduces to the Harry Dym equation. 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend