soliton hierarchies and matrix loop algebras
play

Soliton hierarchies and matrix loop algebras Wen-Xiu Ma Department - PowerPoint PPT Presentation

Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Soliton hierarchies and matrix loop algebras Wen-Xiu Ma Department of Mathematics and Statistics University of


  1. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Soliton hierarchies and matrix loop algebras Wen-Xiu Ma Department of Mathematics and Statistics University of South Florida, USA (35th Workshop on Geometric Methods in Physics, Bialowieza, Poland; 26 June - 2 July, 2016)

  2. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Outline Overview 1 Generating scheme and symmetry algebra 2 sl(2 , R )-soliton hierarchies 3 so(3 , R )-soliton hierarchies 4 Concluding remarks 5

  3. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Outline Overview 1 Generating scheme and symmetry algebra 2 sl(2 , R )-soliton hierarchies 3 so(3 , R )-soliton hierarchies 4 Concluding remarks 5

  4. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Outline Overview 1 Generating scheme and symmetry algebra 2 sl(2 , R )-soliton hierarchies 3 so(3 , R )-soliton hierarchies 4 Concluding remarks 5

  5. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Outline Overview 1 Generating scheme and symmetry algebra 2 sl(2 , R )-soliton hierarchies 3 so(3 , R )-soliton hierarchies 4 Concluding remarks 5

  6. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Outline Overview 1 Generating scheme and symmetry algebra 2 sl(2 , R )-soliton hierarchies 3 so(3 , R )-soliton hierarchies 4 Concluding remarks 5

  7. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Overview 1 Generating scheme and symmetry algebra 2 sl(2 , R )-soliton hierarchies 3 so(3 , R )-soliton hierarchies 4 Concluding remarks 5

  8. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Soliton equations u t = Φ n K 0 [ u ] ⇔ φ x = U ( u , λ ) φ or E φ = U ( u , λ ) φ ✓ ✏ u t = K 0 [ u ] ⇔ U t − V x + [ U , V ] = 0 � � or U t + UV − ( EV ) U = 0 ✒ ✑ spectral matrix U ⇔ recursion operator Φ

  9. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks KdV equation The KdV equation: u t − 3 2 b 1 uu x − 1 4 b 1 u xxx = 0 . Lax Pair: � � 0 1 U = , λ − u 0 − 1 λ + 1   4 u x 2 u V = b 1  .   − ( λ + 1 2 u )( u − λ ) − 1 1  4 u xx 4 u x

  10. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks NLS equations The nonlinear Schr¨ odinger equations: � p t = − 1 2 p xx + p 2 q , q t = 1 2 q xx − pq 2 . Lax Pair: � � − λ p U = , q λ − λ 2 + 1 λ p − 1 � � 2 pq 2 p x V = . λ 2 − 1 λ q + 1 2 q x 2 pq

  11. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Symmetry and conservation law Symmetry: S is called a symmetry of u t = K ( u ), if [ K , S ] = K ′ [ S ] − S ′ [ K ] = 0 , P ′ [ S ] = ∂ � ∂ε P ( u + ε S ) ε =0 . � � This defines a commuting flow with u t = K ( u ). Conservation law: A conservation law is ∂ t T + ∂ x X = 0 when u t = K ( u ) . This gives a conserved density: � d T dx = 0 when u t = K ( u ) . dt

  12. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks The fundamental question Question: How to generate soliton equations with infinitely many symmetries and/or conservation laws? Starting point: Spectral problems on matrix loop algebras

  13. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Overview 1 Generating scheme and symmetry algebra 2 sl(2 , R )-soliton hierarchies 3 so(3 , R )-soliton hierarchies 4 Concluding remarks 5

  14. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Spectral problems Let g be a semisimple Lie algebra and its loop algebra g = g ⊗ C [ λ, λ − 1 ] . ˜ Choose a peudoregular element e 0 ( λ ): ( a) Ker ( ad e 0 ) ⊕ Im ( ad e 0 ) = ˜ g , ( b ) Ker ( ad e 0 ) is commutative . Spectral problem with linearly independent e i ∈ ˜ g , 0 ≤ i ≤ q : φ x = U φ, U = U ( λ, u ) = e 0 ( λ ) + u 1 e 1 ( λ ) + · · · + u q e q ( λ ) .

  15. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Zero curvature equations Solve the stationary zero curvature equation � V i λ − i . V x = [ U , V ] , V = i ≥ 0 Select ∆ n so that V ( n ) = ( λ n V ) + + ∆ n where + means to take the polynomial part, satisfies V ( n ) − [ U , V ( n ) ] ∈ span ( e 1 , · · · , e q ) . x

  16. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Zero curvature equations - P.D. Lax, Comm. Pure Appl. Math. , 21 (1968), 467-490. Lax pairs: U , V ( n ) or φ x = U φ, φ t n = V ( n ) φ. Zero curvature equations U t n − V ( n ) + [ U , V ( n ) ] = 0 x present a soliton hierarchy u t n = K n ( u ) , n ≥ 0 .

  17. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Algebraic structure of Lax operators - W.X. Ma, J. Phys. A , 25 (1992), 5329-5343; 26 (1993), 2573-2582. An evolution equation u t = K ( u ) � U ′ [ K ] + f ( λ ) U λ − V x + [ U , V ] = 0 � φ x = U ( u , λ ) φ, φ t = V ( u , λ ) φ under λ t = f ( λ ).

  18. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Commutators Introduce [ K , S ] = K ′ [ S ] − S ′ [ K ] , ] = V ′ [ S ] − W ′ [ K ] + [ V , W ] + gV λ − fW λ , [ [ V , W ] ]( λ ) = f ′ ( λ ) g ( λ ) − f ( λ ) g ′ ( λ ) , [ [ f , g ] where P ′ [ S ] = ∂ � ∂ǫ P ( u + ǫ S ) ǫ =0 . � �

  19. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Algebraic structure - W.X. Ma, J. Phys. A , 26 (1993), 2573-2582. If U ′ [ K ] + f ( λ ) U λ − V x + [ U , V ] = 0 , U ′ [ S ] + g ( λ ) U λ − W x + [ U , W ] = 0 , then U ′ [ [ K , S ] ] + [ [ f , g ] ]( λ ) U λ − [ [ V , W ] ] x + [ U , [ [ V , W ] ]] = 0 .

  20. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Lie algebraic structure - W.X. Ma, British J. Appl. Sci. Tech. , 3 (2013), 1336-1344. All ( K , V , f ) form a Lie algebra under the binary operation: [ [( K , V , f ) , ( S , W , g )] ] = ([ K , S ] , [ [ V , W ] ] , [ [ f , g ] ]) . That is, the above operation satisfies Bilinearity: [ [ α ( K 1 , V 1 , f 1 ) + β ( K 2 , V 2 , f 2 ) , ( K 3 , V 3 , f 3 )] ] = α [ [( K 1 , V 1 , f 1 ) , ( K 3 , V 3 , f 3 )] ] + β [ [( K 2 , V 2 , f 2 ) , ( K 3 , V 3 , f 3 )] ] . Anticommutativity: [ [( K 1 , V 1 , f 1 ) , ( K 2 , V 2 , f 2 )] ] = − [ [( K 2 , V 2 , f 2 ) , ( K 1 , V 1 , f 1 )] ] . The Jacobi Identity: [ [( K 1 , V 1 , f 1 ) , [ [( K 2 , V 2 , f 2 ) , ( K 3 , V 3 , f 3 )] ]] ] + cycle (1 , 2 , 3) = 0 .

  21. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Symmetry algebras Symmetry algebras in (1+1)-dimensions: [ K m , K n ] = 0 , [ K n , τ s , m ] = ( m + γ + 1) K m + n , [ τ s , n , τ s , m ] = ( m − n ) τ s , m + n , where τ s , m = σ m +1 + t [ K s , σ m +1 ] . Graded symmetry algebras in higher-dimensions: � g = g i i ∈ Z for KP, MKP, etc.

  22. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Trace and variational identities Semisimple Lie algebras: δ � tr ( V ∂ U ∂λ ) dx = λ − γ ∂ ∂λλ γ tr ( V ∂ U ∂ u ) , γ = − λ d d λ ln | tr ( V 2 ) | . δ u 2 Non-semisimple Lie algebras: δ � � V , ∂ U ∂λ � dx = λ − γ ∂ ∂λλ γ � V , ∂ U ∂ u � , γ = − λ d d λ ln � V , V � , 2 δ u where �· , ·� is an ad-invariant, symmetric and non-degenerate bilinear form.

  23. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Overview 1 Generating scheme and symmetry algebra 2 sl(2 , R )-soliton hierarchies 3 so(3 , R )-soliton hierarchies 4 Concluding remarks 5

  24. Overview Generating scheme and symmetry algebra sl(2 , R )-soliton hierarchies so(3 , R )-soliton hierarchies Concluding remarks Lie algebra sl(2 , R ) sl(2 , R ): [ e 1 , e 2 ] = 2 e 2 , [ e 1 , e 3 ] = − 2 e 3 , [ e 2 , e 3 ] = e 1 , where � � � � � � 1 0 0 1 0 0 e 1 = , e 2 = , e 3 = . 0 − 1 0 0 1 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend