the worldvolume action of kink solitons
play

The Worldvolume Action of Kink Solitons Kurt Hinterbichler, Justin - PowerPoint PPT Presentation

The Worldvolume Action of Kink Solitons Kurt Hinterbichler, Justin Khoury, Burt A. Ovrut, James Stokes The University of Pennsylvania March 18, 2012 Outline Motivation Scalar Kinks in d = 5 Flat Spacetime Scalar Kinks in d = 5 AdS Spacetime


  1. The Worldvolume Action of Kink Solitons Kurt Hinterbichler, Justin Khoury, Burt A. Ovrut, James Stokes The University of Pennsylvania March 18, 2012

  2. Outline Motivation Scalar Kinks in d = 5 Flat Spacetime Scalar Kinks in d = 5 AdS Spacetime Scalar Kinks in d = 5 Heterotic M-theory Spacetime 2 of 17

  3. The Universe on a Domain Wall? Motivation from String Theory � E 8 × E 8 Heterotic string E 2 ≪ α ′ ⇒ d = 11 SUGRA on R 1 , 9 × S 1 = ℓ s g s / Z 2 with E 8 SYM on the orbifold fixed planes � Compactify 6 of the 9 non-compact spacelike directions on a Calabi-Yau 3-fold = ⇒ spacetime is a warped product of R 1 , 3 × CY 3 and S 1 / Z 2 � There exists a regime in which the universe appears 5-dimensional (Heterotic M-theory) � 5 + 1-dimensional “5-branes” in the 11D bulk = ⇒ 3 + 1-dimensional “3-branes” in 5D effective theory � The physics of the brane-bending mode π of the 3-brane has implications for 4D cosmology (e.g. Galileons) 3 of 17

  4. Problem Compute the effective action for the brane bending mode of a probe domain-wall kink soliton in maximally symmetric spacetime as a precursor for the Heterotic M-theory 5-brane. UV Toy Model � 1 � d 5 x √− g ( R − 2Λ) − 1 � 2 g mn ∂ m Φ ∂ n Φ − V (Φ) S 5 D = , (1) 2 κ 2 M 5 5 � For Λ = 0 (flat spacetime) choose 1 V (Φ) = λ (Φ 2 − η 2 ) 2 (probe brane approximation) � “Kink” solution describes a static Φ 1 domain wall of width: ℓ = √ 2 λ η √ � 1 Φ = ηφ (0) , φ (0) = tanh ( η 2 λ y ) � l l y (2) 4 of 17

  5. Procedure � Consider classical fluctuations about the classical background configuration which depend on both the internal space y and the tangential 3-brane coordinates σ µ � The fluctuation of the position of the zero-locus of Φ is described by a field π = π ( σ µ ). What is its effective action? � Expect on general grounds that operators in the effective action organize into geometric invariants √ √ √ √ − hK 2 − h , − hK , − hR , , . . . (3) � �� � � �� � � �� � dim = 0 dim = 1 dim = 2 � Define the effective Lagrangian by integrating out the internal space � Compute Lagrangian by expanding in powers of the wall thickness ℓ 5 of 17

  6. Gauss Codazzi formalism (Carter and Gregory hep-th/9410095) � The dynamics of the wall is fully described by the scalar wave equation ( g mn = (1 , η µν ) flat) g mn ∇ m ∇ n Φ − 4 λ Φ(Φ 2 − η 2 ) = 0 (4) � This is equivalent to n Φ + K L n Φ + g mn D m D n Φ − 4 λ Φ(Φ 2 − η 2 ) = 0 L 2 (5) where h mn = g mn − n m n n , K mn = ∇ m n n (6) are subject to the constraints L n K mn = K mp K p L n h mn = 2 K mn , (7) n � Work in gaussian normal coordinates adapted to the worldvolume ( σ µ , y ) so L n = ∂/∂ y 6 of 17

  7. Rescalings � Let L = characteristic length of wall fluctuation, ℓ = wall width, ǫ = ℓ/ L � Rescale worldvolume quantities (e.g., K , σ µ ) by L and quantities transverse to the brane (i.e, y ) by ℓ � EOM in dimensionless variables h ′ mn = 2 ǫκ mn (8) κ ′ mn = ǫκ mp κ p (9) n 0 = φ ′′ + ǫκφ ′ − 2 φ ( φ 2 − 1) + ǫ 2 ˆ D m ˆ D m φ (10) � Expand φ, h mn , κ mn in dimensionless small parameter ǫ , φ = φ (0) + ǫφ (1) + ǫ 2 2 φ (2) + O ( ǫ 3 ) , (11) h mn = h (0) mn + ǫ h (1) mn + ǫ 2 2 h (2) mn + O ( ǫ 3 ) , (12) 2 κ (2) mn + ǫ 2 κ mn = 1 ǫ κ (0) mn + κ (1) mn + ǫ 6 κ (3) mn + O ( ǫ 3 ) (13) 7 of 17

  8. ǫ -expansion � At zeroth the Gauss-Codazzi equations are trivially solved by h (0) mn = ˆ h (0) mn ( σ ) , κ (0) mn = 0 , φ (0) = tanh( u ) (14) � At first order in ǫ the induced metric and extrinsic curvature are simply h (1) mn = 2 u ˆ κ (1) mn , κ (1) mn = ˆ κ (1) mn ( σ ) (15) � The first-order scalar equation φ ′′ (1) − 2(3 φ 2 κ (1) ( σ ) φ ′ (0) − 1) φ (1) + ˆ (0) = 0 can be solved with the ansatz φ (1) ( σ, u ) = ˆ κ (1) ( σ ) f ( u ) u →± 0 u →±∞ � Taking boundary conditions to be Φ − → 0, Φ − → ± η gives � y � � y � + O ( ℓ 2 ) Φ = η tanh + ηℓ K ( σ ) f (16) ℓ ℓ where f ( u ) = ± 1 2 tanh( u ) − 1 � 2 3 ± u cosh 2 ( u ) − 1 1 6 e ∓ 2 u . � 2 + (17) 2 8 of 17

  9. Effective action in R 1 , 4 √ � d 4 σ S 4 D = − h L 4 D ( σ ) (18) M 4 where √− g � L 4 D ( σ ) ≡ dy J L 5 D ( σ, y ) , J = √ (19) − h In Gaussian normal coordinates ( σ µ , y ), J = 1 + y K + 1 2 y 2 � R (4) − R (5) + R (5) mn n m n n � + · · · (20) where K , R (4) , R (5) , . . . are evaluated on the brane world volume ( y = 0) and R (5) mn = 0 in flat spacetime. It follows that to order ℓ 2 L 4 D = − 4 η 2 1 + C I R (4) + C II K 2 + · · · � � (21) 3 ℓ where 2 = π 2 − 6 ℓ 2 ℓ 2 C I = I II C II = − I III 2 = − 1 3 ℓ 2 . ℓ 2 , (22) 24 I I I I � + ∞ � + ∞ � + ∞ (0) = π 2 − 6 (0) = 4 (0) = 8 du φ ′ 2 du u 2 φ ′ 2 du f φ ′ I I = 3 , I II = , I III = 9 . 9 −∞ −∞ −∞ (23) 9 of 17

  10. Gauss Codazzi formalism (Hinterbichler, Khoury, Ovrut, JS, To Appear) � The dynamics of the wall is fully described by the scalar wave equation ( g mn = ( e 2 y / R , η µν ) AdS) √ g mn ∇ m ∇ n Φ − 4 λ Φ(Φ 2 − η 2 ) − 4 2 λ � η 2 − Φ 2 � = 0 . (24) R � This is equivalent to √ n Φ + K L n Φ + D m D m Φ − 4 λ Φ(Φ 2 − η 2 ) − 4 2 λ η 2 − Φ 2 � � L 2 = 0 , (25) R where h mn = g mn − n m n n , K mn = ∇ m n n (26) are subject to the constraints n + 1 n − R (5) L n K mn = K mp K p rspq n s n q h r m h p n = K mp K p L n h mn = 2 K mn , R 2 h mn � Work in gaussian normal coordinates adapted to the worldvolume ( σ µ , y ) so L n = ∂/∂ y 10 of 17

  11. ǫ -expansion � At zeroth the Gauss-Codazzi equations are solved by ( δ = ℓ/ R ) h (0) mn = e 2 δ u ˆ h (0) mn ( σ ) , κ (0) mn = δ h (0) mn , φ (0) = tanh( u ) (27) � At first order in ǫ the induced metric and extrinsic curvature are simply h (1) mn = 1 � � κ (1) mn = e 2 δ u ˆ κ (1) mn − ˆ κ (1) mn ( σ ) , κ (1) mn ( σ ) (28) δ � The first-order scalar equation � � φ ′′ (1) + κ (0) φ ′ (1) + κ (1) φ ′ 3 φ 2 (0) − 2 (0) − 1 φ (1) + 8 δφ (0) φ (1) = 0 can be solved with the ansatz φ (1) ( σ, u ) = ˆ κ (1) ( σ ) F ( u ) u →± 0 u →±∞ � Taking boundary conditions to be Φ − → 0, Φ − → ± η gives � y � � y � K ( σ ) = K ( σ ) − 4 + ηℓ ˆ + O ( ℓ 2 ) , ˆ Φ = η tanh K ( σ ) F ℓ ℓ R (29) where F ( u ) can be determined numerically 11 of 17

  12. Effective action in AdS 5 In Gaussian normal coordinates ( σ µ , y ), � � J = 1 + y K + 1 R (4) + 16 2 y 2 + · · · (30) R 2 where K and R (4) are evaluated on the brane world volume ( y = 0). It follows that to order ℓ 2 L 4 D = − 4 η 2 1 + C 0 K + C I R (4) + C II K 2 � 1 − 6 δ 2 ( I III − I II ) � �� (31) 3 ℓ where � � � 3 ℓ 2 � 3 ℓ 2 I ǫδ + I III I II I III C 0 = 3 � ℓδ, C I = 8 , C II = − 8 . � 1 − 6 δ 2 ( I III − I II ) � 1 − 6 δ 2 ( I III − I II ) � 1 − 6 δ 2 ( I III − I II ) (32) � + ∞ � + ∞ � + ∞ (0) = π 2 − 6 (0) = 4 φ (0) − 1 du φ ′ 2 3 φ 3 du u 2 φ ′ 2 � � I I = 3 , I ǫδ = du u , I II = , (0) 9 −∞ −∞ −∞ � + ∞ du F φ ′ I III = (0) −∞ 12 of 17

  13. Evaluation of I ǫδ � + ∞ � � φ (0) − 1 � Note that I ǫδ = 3 φ 3 −∞ du u is naively quadratically (0) divergent since the argument of the integrand is even and unbounded � The Gaussian normal coordinate patch is only defined up to the point where the geodesics converge, which is determined by the minimum of L or R � After introducing the appropriate cut-off, the integral is finite and can be estimated to be of order  1 /ǫ 2 if δ < ǫ  I ǫδ ∝ (33)  1 /δ 2 if ǫ < δ 13 of 17

  14. C 0 � l 1 � 6 ∆ 2 � I III � I II � 10 1.2 8 1.0 6 0.8 0.6 4 0.4 2 0.2 ∆ 0.6 ∆ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 C I � l 2 C II � l 2 0.6 ∆ 0.15 0.1 0.2 0.3 0.4 0.5 � 0.02 0.10 � 0.04 � 0.06 0.05 � 0.08 � 0.10 0.6 ∆ 0.0 0.1 0.2 0.3 0.4 0.5 � 0.12 � � , C 0 / l , C I / l 2 and C II / l 2 1 − 6 δ 2 ( I III − I II ) Figure: Numerical calculation of as functions of δ . Of the four coefficients, only C 0 / l depends on I ǫδ and, hence, on the value of the cut-off ratio R L = ǫ δ . Therefore, to evaluate C 0 / l we must specify a value for ǫ . In Figure 2(B), we choose ǫ = 0 . 2. Note that C 0 / l is defined piecewise and changes behavior at δ ∼ ǫ 14 of 17 .

  15. Heterotic M-theory (Lukas, Ovrut, Stelle, Waldram, hep-th/9806051) In the absence of any 3-branes, the bosonic part of the action for d = 5, N = 1 supersymmetric heterotic M-theory � d 4 xdy √− g S = − 1 � 1 2 R + 1 4 g mn ∂ m φ∂ n φ + 1 3 α 2 e − 2 φ � { 2 κ 2 5 M 5 � � d 4 x √− g 2 α e − φ − d 4 x √− g 2 α e − φ } , + (34) M 4 M 4 ds 2 = e 2 A ( y ) dx µ dx ν η µν + e 2 B ( y ) dy 2 , φ = φ ( y ) (35) For SUSY preserving backgrounds A and B satisfy the BPS equations e − B A ′ = − α e − B φ ′ = − 2 α e − φ 3 e − φ , (36) 15 of 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend