quantum dark solitons in the one dimensional bose gas
play

Quantum dark solitons in the one- dimensional Bose gas Joachim - PowerPoint PPT Presentation

Quantum dark solitons in the one- dimensional Bose gas Joachim Brand Humboldt Kolleg Controlling quantum matter: from ultracold atoms to solids July 2018 Sophie S. Shamailov Solitons Water Optics BEC Coupled Pedula Tikhonenko et al.


  1. Quantum dark solitons in the one- dimensional Bose gas Joachim Brand Humboldt Kolleg – Controlling quantum matter: from ultracold atoms to solids– July 2018

  2. Sophie S. Shamailov

  3. Solitons Water Optics BEC Coupled Pedula Tikhonenko et al. (1996) 3 Sengstock group (2008) credit: Alex Kasman

  4. Solitons are solutions of nonlinear partial differential equations. Can we find solitons in strongly-correlated quantum fluids? What are their properties? Let’s find them in the one-dimensional Bose gas.

  5. Dark soliton oscillations in BEC experiment Solitons in trapped BEC oscillate more slowly than COM Theory: ✓ T s • Busch, Anglin PRL (2000) ◆ 2 M in • Konotop, Pitaevskii, PRL (2004) = = 2 M ph T trap Experiment: • Becker et al. Nat. Phys. (2008) • Weller et al. PRL (2008) Movie credits: Nick Parker Hamburg Experiment: Becker et al. (2008)

  6. Dark solitons <latexit sha1_base64="0YUGAh1Eu2bIviM2gk6L17dgUk=">ACFnicbVDLSgMxFM3UV62vUZdugkWoi5aM+KgLoeDGlVSwD2iHksmkbWgmMyQZaRn6FW78FTcuFHEr7vwbM20RrR4IHM65l5x7vIgzpRH6tDILi0vLK9nV3Nr6xuaWvb1TV2EsCa2RkIey6WFORO0pnmtBlJigOP04Y3uEz9xh2VioXiVo8i6ga4J1iXEayN1LGL1512gHVfBok/hewzYSGLVEYHsIiFN+e1xu70B927DwqIef8FJUhKp2kzDETQCdGcmDGaod+6PthyQOqNCEY6VaDoq0m2CpGeF0nGvHikaYDHCPtgwVOKDKTSZnjeGBUXzYDaV5JtVE/bmR4ECpUeCZyTSmvdS8T+vFetu2U2YiGJNBZl+1I051CFMO4I+k5RoPjIE8lMVkj6WGKiTZM5U4Izf/JfUj8qOajk3BznK+VZHVmwB/ZBATjgDFTAFaiCGiDgHjyCZ/BiPVhP1qv1Nh3NWLOdXfAL1vsX5Zuejg=</latexit> <latexit sha1_base64="0YUGAh1Eu2bIviM2gk6L17dgUk=">ACFnicbVDLSgMxFM3UV62vUZdugkWoi5aM+KgLoeDGlVSwD2iHksmkbWgmMyQZaRn6FW78FTcuFHEr7vwbM20RrR4IHM65l5x7vIgzpRH6tDILi0vLK9nV3Nr6xuaWvb1TV2EsCa2RkIey6WFORO0pnmtBlJigOP04Y3uEz9xh2VioXiVo8i6ga4J1iXEayN1LGL1512gHVfBok/hewzYSGLVEYHsIiFN+e1xu70B927DwqIef8FJUhKp2kzDETQCdGcmDGaod+6PthyQOqNCEY6VaDoq0m2CpGeF0nGvHikaYDHCPtgwVOKDKTSZnjeGBUXzYDaV5JtVE/bmR4ECpUeCZyTSmvdS8T+vFetu2U2YiGJNBZl+1I051CFMO4I+k5RoPjIE8lMVkj6WGKiTZM5U4Izf/JfUj8qOajk3BznK+VZHVmwB/ZBATjgDFTAFaiCGiDgHjyCZ/BiPVhP1qv1Nh3NWLOdXfAL1vsX5Zuejg=</latexit> <latexit sha1_base64="0YUGAh1Eu2bIviM2gk6L17dgUk=">ACFnicbVDLSgMxFM3UV62vUZdugkWoi5aM+KgLoeDGlVSwD2iHksmkbWgmMyQZaRn6FW78FTcuFHEr7vwbM20RrR4IHM65l5x7vIgzpRH6tDILi0vLK9nV3Nr6xuaWvb1TV2EsCa2RkIey6WFORO0pnmtBlJigOP04Y3uEz9xh2VioXiVo8i6ga4J1iXEayN1LGL1512gHVfBok/hewzYSGLVEYHsIiFN+e1xu70B927DwqIef8FJUhKp2kzDETQCdGcmDGaod+6PthyQOqNCEY6VaDoq0m2CpGeF0nGvHikaYDHCPtgwVOKDKTSZnjeGBUXzYDaV5JtVE/bmR4ECpUeCZyTSmvdS8T+vFetu2U2YiGJNBZl+1I051CFMO4I+k5RoPjIE8lMVkj6WGKiTZM5U4Izf/JfUj8qOajk3BznK+VZHVmwB/ZBATjgDFTAFaiCGiDgHjyCZ/BiPVhP1qv1Nh3NWLOdXfAL1vsX5Zuejg=</latexit> <latexit sha1_base64="0YUGAh1Eu2bIviM2gk6L17dgUk=">ACFnicbVDLSgMxFM3UV62vUZdugkWoi5aM+KgLoeDGlVSwD2iHksmkbWgmMyQZaRn6FW78FTcuFHEr7vwbM20RrR4IHM65l5x7vIgzpRH6tDILi0vLK9nV3Nr6xuaWvb1TV2EsCa2RkIey6WFORO0pnmtBlJigOP04Y3uEz9xh2VioXiVo8i6ga4J1iXEayN1LGL1512gHVfBok/hewzYSGLVEYHsIiFN+e1xu70B927DwqIef8FJUhKp2kzDETQCdGcmDGaod+6PthyQOqNCEY6VaDoq0m2CpGeF0nGvHikaYDHCPtgwVOKDKTSZnjeGBUXzYDaV5JtVE/bmR4ECpUeCZyTSmvdS8T+vFetu2U2YiGJNBZl+1I051CFMO4I+k5RoPjIE8lMVkj6WGKiTZM5U4Izf/JfUj8qOajk3BznK+VZHVmwB/ZBATjgDFTAFaiCGiDgHjyCZ/BiPVhP1qv1Nh3NWLOdXfAL1vsX5Zuejg=</latexit> • Mean field (classical) theory: � Defocussing nonlinear Schrödinger (Gross-Pitaevskii) equation Velocity v s = 0 v s 6 = 0 Number density Number of depleted particles Z N d = [ n ( x ) − n bg ] dx Dark and grey soliton solution ( g >0): Tsuzuki, JLTP (1971) Phase Superfluid phase step ∆ φ Effective mass, length scale Kivshar, Luther-Davis (1998)

  7. <latexit sha1_base64="a/8qt4gRnO0etMLRSAJvK2RKxvk=">ACN3icbVDLSgMxFM3UV62vqks3wSI0jJTBLsRCm4URCrYB3TqkEkzbdokMyQZoQzV278DXe6caGIW/A9LHQ1gOBwzncnOPHzGqtG2/WJml5ZXVtex6bmNza3snv7vXUGEsManjkIWy5SNFGBWkrqlmpBVJgrjPSNMfXoz95gORiobiTo8i0uGoJ2hAMdJG8vI3Q29w4gYS4cRJk+vUVTH3GCxDF0mskZhaJgSLcOixNOG9/n1SLKcpPIdTs+xGdDwKr7yBly/YJXsCuEicGSmAGWpe/tnthjmRGjMkFJtx450J0FSU8xImnNjRSKEh6hH2oYKxInqJO7U3hklC4MQme0HCi/p5IEFdqxH2T5Ej31bw3Fv/z2rEOKp2EijWRODpoiBmUIdwXCLsUkmwZiNDEJbU/BXiPjJlaFN1zpTgzJ+8SBrlkmOXnNvTQrUyqyMLDsAhOAYOANVcAlqoA4weASv4B18WE/Wm/VpfU2jGWs2sw/+wPr+AWeLrC4=</latexit> <latexit sha1_base64="a/8qt4gRnO0etMLRSAJvK2RKxvk=">ACN3icbVDLSgMxFM3UV62vqks3wSI0jJTBLsRCm4URCrYB3TqkEkzbdokMyQZoQzV278DXe6caGIW/A9LHQ1gOBwzncnOPHzGqtG2/WJml5ZXVtex6bmNza3snv7vXUGEsManjkIWy5SNFGBWkrqlmpBVJgrjPSNMfXoz95gORiobiTo8i0uGoJ2hAMdJG8vI3Q29w4gYS4cRJk+vUVTH3GCxDF0mskZhaJgSLcOixNOG9/n1SLKcpPIdTs+xGdDwKr7yBly/YJXsCuEicGSmAGWpe/tnthjmRGjMkFJtx450J0FSU8xImnNjRSKEh6hH2oYKxInqJO7U3hklC4MQme0HCi/p5IEFdqxH2T5Ej31bw3Fv/z2rEOKp2EijWRODpoiBmUIdwXCLsUkmwZiNDEJbU/BXiPjJlaFN1zpTgzJ+8SBrlkmOXnNvTQrUyqyMLDsAhOAYOANVcAlqoA4weASv4B18WE/Wm/VpfU2jGWs2sw/+wPr+AWeLrC4=</latexit> <latexit sha1_base64="a/8qt4gRnO0etMLRSAJvK2RKxvk=">ACN3icbVDLSgMxFM3UV62vqks3wSI0jJTBLsRCm4URCrYB3TqkEkzbdokMyQZoQzV278DXe6caGIW/A9LHQ1gOBwzncnOPHzGqtG2/WJml5ZXVtex6bmNza3snv7vXUGEsManjkIWy5SNFGBWkrqlmpBVJgrjPSNMfXoz95gORiobiTo8i0uGoJ2hAMdJG8vI3Q29w4gYS4cRJk+vUVTH3GCxDF0mskZhaJgSLcOixNOG9/n1SLKcpPIdTs+xGdDwKr7yBly/YJXsCuEicGSmAGWpe/tnthjmRGjMkFJtx450J0FSU8xImnNjRSKEh6hH2oYKxInqJO7U3hklC4MQme0HCi/p5IEFdqxH2T5Ej31bw3Fv/z2rEOKp2EijWRODpoiBmUIdwXCLsUkmwZiNDEJbU/BXiPjJlaFN1zpTgzJ+8SBrlkmOXnNvTQrUyqyMLDsAhOAYOANVcAlqoA4weASv4B18WE/Wm/VpfU2jGWs2sw/+wPr+AWeLrC4=</latexit> <latexit sha1_base64="a/8qt4gRnO0etMLRSAJvK2RKxvk=">ACN3icbVDLSgMxFM3UV62vqks3wSI0jJTBLsRCm4URCrYB3TqkEkzbdokMyQZoQzV278DXe6caGIW/A9LHQ1gOBwzncnOPHzGqtG2/WJml5ZXVtex6bmNza3snv7vXUGEsManjkIWy5SNFGBWkrqlmpBVJgrjPSNMfXoz95gORiobiTo8i0uGoJ2hAMdJG8vI3Q29w4gYS4cRJk+vUVTH3GCxDF0mskZhaJgSLcOixNOG9/n1SLKcpPIdTs+xGdDwKr7yBly/YJXsCuEicGSmAGWpe/tnthjmRGjMkFJtx450J0FSU8xImnNjRSKEh6hH2oYKxInqJO7U3hklC4MQme0HCi/p5IEFdqxH2T5Ej31bw3Fv/z2rEOKp2EijWRODpoiBmUIdwXCLsUkmwZiNDEJbU/BXiPjJlaFN1zpTgzJ+8SBrlkmOXnNvTQrUyqyMLDsAhOAYOANVcAlqoA4weASv4B18WE/Wm/VpfU2jGWs2sw/+wPr+AWeLrC4=</latexit> The one-dimensional Bose gas Lieb-Liniger model: Bosons with contact interactions in one dimension N H = − ~ 2 d 2 X X + g δ ( x i − x j ) dx 2 2 m j j =1 h i,j i ⎛ ⎞ Bethe ansatz wave function ∑ ∑ | = ⟨ { } { } ⟩ x k a ( ) P ⎜ k x ⎟ exp , i i P ( ) i i ⎝ ⎠ ∈ P S N ( ) i 2 arctan k j − k l k j + 1 mgh − 2 = 2 π X L I j L l N X k j - Rapidities/quasimomenta P tot = ~ k j , j =1 - Integer quantum numbers I j N E tot = ~ 2 - number of bosons N X k 2 j . 2 m j =1

  8. Low-lying excitation spectrum (yrast states) Experimental probe of dynamic structure Here for Tonks-Girardeau gas, γ = ∞ , N=15 Energy factor Fabbri et al. (2015) Lieb’s type II elementary excitations Umklapp excitation (ring current) P Momentum Eigenstates are translationally invariant! 2 π ~ n Where are the solitons?

  9. Comparison of dispersion relations Takayama, Ishikawa, JPSP (1980): Asymptotically (weak interaction, thermodynamic limit) is GP dark soliton congruent with yrast dispersion of Lieb-Liniger model 0 ( E − E g ) 5 Circles: finite system (ring), 4 N = 10, γ =1 3 2 1 Thermodynamic limit, h 2 n 2 2 m 0 N = ∞ , γ =1 ¯ π / 2 π 0 3 π / 2 2 π P gm hn 0 γ = ¯ n 0 ~ 2 − 1

  10. How to get over the translational invariance of the eigenstates? • Syrwid, Sacha, PRA (2015): Soliton emerges during particle measurement. • Sato et al. NJP (2012, 2016): Localised density dip by superposition of all yrast eigenstates • Our proposal: Gaussian wave packet of yrast states Soliton velocity: 5 0 ( E − E g ) 4 v s = dE s 3 dp c 2 Fialko, Delattre, JB, Kolovsky (2012) 1 h 2 n 2 2 m Shamailov, Brand, arXiv:1805.07856 0 ¯ π / 2 π 3 π / 2 2 π 0 P hn 0 ¯ − 1

  11. Simulating time evolution n ( x, t ) = h P 0 ( t ) | ˆ ρ ( x ) | P 0 ( t ) i X C P 0 ∗ C P 0 = p h q, yr | ˆ ρ (0) | p, yr i q p,q ⇥ exp[ i ( p � q ) x/ ~ � i ( E p � E q ) t/ ~ ] , The form factor is calculated by determinantal formula from the rapidities. Formula derived from algebraic Bethe ansatz: Slavnov (1989), Korepin (1982), Caux (2007)

  12. Time evolution of Gaussian wave packet (exact) N = 100 γ = 1 1.2 0.8 n s /n 0 30 0.4 20 hn 2 ¯ 0 2 m t 10 0 40 50 60 70 0 80 90 n 0 x Shamailov, Brand, arXiv:1805.07856

  13. Time evolution of quantum dark soliton Use the following ansatz, in analogy to quantum bright solitons: 2 + σ 2 ∆ x 2 ( t ) = σ fs CoM ( t ) , " ◆ 2 # ✓ ~ t σ 2 CoM ( t ) = σ 2 1 + 0 2 M σ 2 0 where Z ( x � h x i ) 2 [ n ( x ) � n 0 ] dx ∆ x 2 = N − 1 d Z N d = [ n ( x ) � n 0 ] dx ~ 2 σ 2 0 = 4 ∆ P 2 Ballistic spreading of the CoM – fit two parameters: σ 2 fs , M Shamailov, Brand, arXiv:1805.07856

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend