simulation of the laser plasma interaction with the pic
play

Simulation of the laser plasma interaction with the PIC code ALaDyn - PowerPoint PPT Presentation

Simulation of the laser plasma interaction with the PIC code ALaDyn Carlo Benedetti Department of Physics, University of Bologna & INFN/Bologna, ITALY Oxford, November 20, 2008 p.1/58 Overview of the presentation 1. Presentation of


  1. Simulation of the laser plasma interaction with the PIC code ALaDyn Carlo Benedetti Department of Physics, University of Bologna & INFN/Bologna, ITALY Oxford, November 20, 2008 – p.1/58

  2. Overview of the presentation 1. Presentation of ALaDyn 2. Relevant features of ALaDyn 3. Benchmarks of the code 4. Application I : ALaDyn @ AO-FEL 5. Application II : ALaDyn @ PLASMONX 6. Conclusions and outlooks Oxford, November 20, 2008 – p.2/58

  3. 1. Presentation of ALaDyn Oxford, November 20, 2008 – p.3/58

  4. 1. Presentation of ALaDyn : general features = A cceleration by La ser and Dyn amics of charged particles ALaDyn born in 2007 fully self-consistent, relativistic EM-PIC code “virtual-lab”: laser pulse(s) + injected bunch(es) + plasma ⇒ defined by the user written in C / F 90 , parallelized with MPI, organized as a LIBRARY the (same) code works in 1D, 2D and 3D Cartesian geometry relevant features: low/high order schemes in space/time + moving window + stretched grid + boosted Lorentz frame + hierarchical particle sampling devel. & maintain. @ Dep. of Phys. - UniBo for the INFN-CNR PlasmonX collaboration ” ALaDyn -philosophy” : IMPROVE algorithms/numerical schemes to REDUCE computational requirements ⇒ run 2D/3D simulations in few hours/days on SMALL CLUSTERS ( < 100 CPUs) with an ACCEPTABLE accuracy Oxford, November 20, 2008 – p.4/58

  5. 1. Presentation of ALaDyn : basic equations Maxwell Equations [ME] Vlasov Equation [VE], f s ( s = e, i, · · · ) ∂ B 8 ∂t = − c ∇ × E > > ∂f s ∂t + v · ∂f s · ∂f s E + v < “ ” ⇔ ∂ r + q s c × B ∂ p = 0 > ∂ E > R ∂t = c ∇ × B − 4 π P s q s v f s d p : ∇ · B ( t ) = 0 if ∇ · B (0) = 0 ⇒ ∇ · E ( t ) = 4 πρ ( t ) if ∇ · E (0) = 4 πρ (0) and ∂ρ ⇒ ∂t + ∇ · J = 0 • fields E , B , J → discretized on a grid with N x × N y × N z = 10 7 − 8 points • num. particles ( r i , p i ) → sample the phase space distribution ( ∼ 10 8 − 9 particles): N ( s ) p q ( s ) δ ( r − r ( s ) ( t )) δ ( p − p ( s ) X q s f s ( r , p , t ) → C Np ( t )) i i i i 8 d r ( s ) = v ( s ) > i > > dt i > > < i = 1 , 2 , · · · , N ( s ) V E [ f s ] ⇒ p d p ( s ) > v ( s ) „ « > = q ( s ) E ( r ( s ) × B ( r ( s ) > i i ) + ) > > dt i i i c : Oxford, November 20, 2008 – p.5/58

  6. 2. Relevant features of ALaDyn Oxford, November 20, 2008 – p.6/58

  7. 2. Relevant features of ALaDyn : high order schemes • Spatial derivatives in the ME ⇒ (compact) high order schemes † Denoting by f i /f ′ i the function/derivative on the i − th grid point i +1 = a f i +1 − f i − 1 + b f i +2 − f i − 2 + c f i +3 − f i − 3 αf ′ i − 1 + f ′ i + αf ′ ( ∗ ) 2 h 4 h 6 h ⇒ relation between a, b, c and α by matching the Taylor expansion of (*) ⇒ if α � = 0 , f ′ i obtained by solving a tri-diagonal linear system ⇒ “classical” 2 nd order: α = b = c = 0 , a = 1 Numerical dispersion relation 1.00 theory 0.75 1. improvement in the spectral accuracy 8comp ω = ω ( k ) ⇒ ( ω /c) h / π � even with few (10-12) points/wavelength 6comp 0.50 6expl the wave phase velocity is well reproduced 4expl 0.25 2expl 0.00 0.00 0.25 0.50 0.75 1.00 k h / π † S.K. Lele, JCP 103 , 16 (1992) Oxford, November 20, 2008 – p.7/58

  8. 2. Relevant features of ALaDyn : high order schemes 2. improvement in the isotropy Compact scheme 8 o Explicit scheme 4 o 3.14 3.14 2.4 2.4 0.6 0.6 k y h y� k y h y� 1.6 1.6 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.9 0.99 0.99 0.00 0.00 0.00 0.8 1.6 2.4 3.14 0.00 0.8 1.6 2.4 3.14 k x h x k x h x • Time integration in the ME & particle Eq. of motion: high accuracy in the spatial derivatives requires high order time integration ⇒ 4 th order Runge-Kutta scheme With high order schemes we can adopt, for a given accuracy, a coarser computational grid allowing to use a higher particles per cell number and a ⇒ ⇐ larger time step compared to standard PIC codes (factor 3-10 gain). Oxford, November 20, 2008 – p.8/58

  9. 2. Relevant features of ALaDyn : stretched grid • Stretched grid: high accuracy in the centre (sub- µ m resolution in transv. plane) VS low accuracy in the borders (not interesting!) x i → “physical” transv. coordinate / ξ i → “rescaled” transv. coordinate ξ i unif. distributed x i = α x tan ξ i , α x → “stretching parameter” ( α x → ∞ unif. grid, α x → 0 super-stretched grid) ⇒ Adopting a transverse stretched grid we (considerably) reduce the number of grid points allowing to save memory (keeping fixed the accuracy) com- ⇒ ⇐ pared to an uniform grid (max. gain ∼ 100). Oxford, November 20, 2008 – p.9/58

  10. 2. Relevant features of ALaDyn : hierarchical particle sampling • A given particle species ( e.g. electrons) can be sampled by a family of macroparticles with different charge putting more macroparticles in the physically interesting zones (center/high energy tails) and less in the borders... We can reduce the total number of particles involved in the simulation (es- pecially when the stretched grid is enabled) AND decrease the statistical ⇒ ⇐ noise ( i.e. increase the reliability of the results). Oxford, November 20, 2008 – p.10/58

  11. 2. Relevant features of ALaDyn : the Boosted Lorentz Frame • The space/time scales spanned by a system are not invariant under Lorentz transform. † ⇒ the “computational complexity” can be reduced changing the reference system Laboratory Frame Boosted Lorentz Frame ( β ∗ ) IMPULSO LASER (P=300 TW) λ 0 → laser wavelength λ ′ 0 = γ ∗ (1 + β ∗ ) λ 0 > λ 0 ℓ → laser length 40 fs ℓ ′ = γ ∗ (1 + β ∗ ) ℓ > ℓ PLASMA L p → plasma length 1.2 mm L ′ p = L p /γ ∗ < L p c ∆ t < ∆ z ≪ λ 0 , λ 0 < ℓ ≪ L p ⇒ t ′ simul ∼ ( L ′ p + ℓ ′ ) / ( c (1 + β ∗ )) ⇒ t simul ∼ ( L p + ℓ ) /c # steps ′ = t ′ L p L p t simul # steps = simul ∝ ≫ 1 ∝ λ 0 γ 2 ∗ (1+ β ∗ ) 2 ∆ t λ 0 ∆ t ′ large # of steps # of steps reduced (1 /γ 2 ∗ ) ⇒ diagnostics is more difficult ( t = cost in the LF � t ′ = cost in the BLF) We can reduce the simulation length changing the reference system (useful ⇒ ⇐ for parameter scan). † J.L. Vay, PRL 98 , 130405 (2007) Oxford, November 20, 2008 – p.11/58

  12. 2. Relevant features of ALaDyn : the Boosted Lorentz Frame without BLF [t=46.3 h] with BLF , β ∗ = 0 . 9 [t=8.1 h] 9e+11 500 -Whithout_BLF -Whithout_BLF -With_BLF 6e+11 -With_BLF -Pukhov_Theory 400 3e+11 300 Ez [V/m]� p z /mc� 0 200 -3e+11 100 -6e+11 -9e+11 0 525 550 575 600 625 525 550 575 600 625 z [um] z [um] Oxford, November 20, 2008 – p.12/58

  13. 3. Benchmarks of the code Oxford, November 20, 2008 – p.13/58

  14. 3. Benchmarks of the code: analytic solutions has been benchmarked against “standard” plasma physics problems • ALaDyn 1.50 Linear Landau damping -theory *simulation 1.00 f e = (1 + 0 . 02 sin( kx )) × √ × exp( − v 2 / 2) / 0.50 2 π (max)� - grid: 16 points 0.00 E x (t)/E x - 10 4 − 10 6 particles/cell -0.50 agreement with -1.00 Vlasov-fluid (512 × 1024) -1.50 0 2 4 6 8 10 ⇓ t’ ⇑ 0 Plasma oscillation - δn/n 0 ∼ 3% -2 - grid: 19 points log (E 1 (t)/E 1 (0))� - 200 particles/cell -4 - ∆ t = T plasma / 15 P = 2 . 52 · 10 14 rad/s ω th -7 -theory P = 2 . 51 · 10 14 rad/s -10^4ppc ω si -10^5ppc error < 0.4 % -10^6ppc -9 0 10 20 30 40 Oxford, November 20, 2008 – p.14/58 t

  15. 3. Benchmarks of the code: analytic solutions • 1D EM Solitons in a e + /e − overdense plasma + trapped radiation with CP a 1.2 10.8 1.0 10.7 0.8 10.6 2 ) 1/2� density � 2 +E’ z 0.6 10.5 (E’ y 0.4 10.4 0.2 electron(t=0) 10.3 electron(t=1000) 0 10.2 -30 -15 0 15 30 0 250 500 750 1000 x t’ ⇒ Stationary solution of the VE: f e + = f e − = exp( − β γ ( x,u x )) 1 + | a | 2 + u 2 where γ = x , p 2 K 1 ( β ) a ( x, t ) = a y ( x, t ) + i a z ( x, t ) = a 0 ( x ) exp( iωt ) . The vector potential satisfies q ! q q 1+ a 2 1+ A 2 K 0 ( β 0 ) K 1 ( β 0 ) d 2 a 0 1 0 + 2 dz 2 + ω 2 a 0 = 2 a 0 2 ω 2 A 2 1 + A 2 , − 1 = 0 0 K 1 ( β ) β K 1 ( β ) ⇒ Simulation: grid with 150 points + 10 4 particles/cell the soliton is stable a M. Lontano, et. al , Phys. Plas. 9 /6, 2562 (2002) Oxford, November 20, 2008 – p.15/58

  16. 3. Benchmarks of the code: HO vs LO schemes • Test based on the nonlinear LWFA regime: Plasma: DENSITY LASER - first plateau: L 1 = 30 µm , density 10 19 e/cm 3 DENSITY - accelerating plateau: L 2 = 220 µm Laser: - λ 0 = 0 . 8 µ m, P = 60 TW, τ F W HM = 17 fs, w 0 = 16 µ m 300 um High Order (3.8h on 4 CPUs)) • ALaDyn - domain: (60 × 80) µ m 2 , grid: (750 × 200) points ⇒ (10 × 2) points/ λ - plasma sampled with: 20 electrons/cell - derivatives: compact h.o. schemes (8 th order), time evolution: 4 th -order Runge-Kutta Low Order (14h on 4 CPUs) • ALaDyn - domain: (50 × 80) µ m 2 , grid: (1200 × 320) points ⇒ (20 × 3.2) points/ λ - plasma sampled with: 20 electrons/cell - derivatives: 2 nd -order accurate, time evolution: 2 nd -order accurate (leap-frog) N ( grid ) N ( particles ) ∆ t HO HO = HO = 0 . 4 ∆ t LO = 1 . 6 N ( grid ) N ( particles ) LO LO Oxford, November 20, 2008 – p.16/58

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend