a categorification of group cohomology
play

A Categorification of Group Cohomology Michael Horst The Ohio State - PowerPoint PPT Presentation

A Categorification of Group Cohomology Michael Horst The Ohio State University horst.59@osu.edu https://www.asc.ohio-state.edu/horst.59/ 27 October 2019 Michael Horst OSU Picard Categories Groupoid Symmetric monoidal Group-like: For all X


  1. A Categorification of Group Cohomology Michael Horst The Ohio State University horst.59@osu.edu https://www.asc.ohio-state.edu/horst.59/ 27 October 2019 Michael Horst OSU

  2. Picard Categories Groupoid Symmetric monoidal Group-like: For all X , there is a Y such that X ⊗ Y ∼ = I ∼ = Y ⊗ X Essential data: π 0 ( C ) = Obj ( C ) / ∼ = π 1 ( C ) = C ( I , I ) K : π 0 ( C ) → π 1 ( C ), X �→ β X , X ∈ C ( X ⊗ X , X ⊗ X ) ∼ = π 1 ( C ) Michael Horst OSU

  3. Examples ∼ = Pic ( R ) := R - Mod inv , for R ∈ CRing Note: π 0 ( Pic ( R )) = pic ( R ) Π 1 X for X ∈ Ω 3 Top Z , “Super Integers” � Z / 2 , if n = m Obj ( Z ) = Z , Z ( n , m ) ∼ = 0 , else Call Z ( n , n ) = {± 1 n } ( β : n + m → m + n ) = ( − 1 n + m ) nm Michael Horst OSU

  4. Free Picard Categories Theorem (H) The forgetful functor U : Pic → Grpd has a left biadjoint given by Z [ ] : Grpd → Pic . Specifically: For G ∈ Grpd and A ∈ Pic , Pic ( Z [ G ] , A ) ≃ Grpd ( G , A ) as Picard categories, pseudonatural in G and A . Michael Horst OSU

  5. Tensoring over Grpd Corollary (H) Pic is tensored over Grpd Specifically: For G ∈ Grpd and A ∈ Pic , there exists A [ G ] ∈ Pic so that for all B ∈ Pic , Pic ( A [ G ] , B ) ≃ Grpd ( G , Pic ( A , B )) pseudonaturally. Proposition (H) Pic is cotensored over Grpd Michael Horst OSU

  6. Picard Cohomology Definition: Category of Modules over G ∈ Pic For G ∈ Pic , G - Mod := PsFunk (Σ G , Pic ) Definition: Picard Cohomology For G ∈ Pic and M ∈ G - Mod , define H n ( G ; M ) := R n � � G - Mod ( Z triv , ) ( M ) i.e. H n ( G ; M ) = Ext n G - Mod ( Z triv , M ) i.e. H n ( G ; M ) = L n � � G - Mod ( , M ) ( Z triv ) Michael Horst OSU

  7. A first computation: H m ( Z / n ; Z ) Proposition (H) The chain complex N x − 1 N x − 1 0 0 . . . − → Z [ Z / n ] − − → Z [ Z / n ] − → Z [ Z / n ] − − → Z [ Z / n ] − → 0 − → . . . provides a projective resolution of 0 0 0 0 . . . − → 0 → Z triv − − → 0 − → . . . Lemma (H) Applying Z / n- Mod ( , Z triv ) to the above yields 0 0 0 n 0 n 0 → 0 − → Z − → Z − − → Z − → Z − → . . . Michael Horst OSU

  8. A first computation: H m ( Z / n ; Z ) Theorem (H) For n even,  Z ⊕ Z / 2 m = 0    Z / 2 ⊕ Σ( Z × Z / 2) m = 1 H m ( Z / n ; Z ) =  Z / n ⊕ Z / 2 m > 1 is even    Z / 2 ⊕ Σ( Z / n × Z / 2) m > 1 is odd  For n odd,  m = 0 Z    Σ( Z ) m = 1 H m ( Z / n ; Z ) =  Z / n m > 1 is even    Σ( Z / n ) m > 1 is odd  Michael Horst OSU

  9. A second computation: H m ( Z / n ; Z ) Lemma (H) Applying Z / n- Mod ( , Z triv ) to the previous resolution yields 0 0 0 n 0 n 0 → 0 − − → Z − → Z − → Z − → Z → . . . − Theorem (H) For all n,  m = 0 Z    Σ( Z ) m = 1 H m ( Z / n ; Z ) =  Z / n m > 1 is even    Σ( Z / n ) m > 1 is odd  Michael Horst OSU

  10. Chain complexes of Picard categories Chain complex of Picard categories 0 0 ∂ n − 2 ∂ n d n − 2 d n − 1 d n d n +1 . . . A n − 2 A n − 1 A n A n +1 A n +2 . . . ∂ n − 1 0 Compute cohomology using relative kernel and cokernel 0 ϕ k F G Ker ( F , ϕ ) A B C κ 0 If H n ( A • ) ≃ 0, call A • relative exact at A n Michael Horst OSU

  11. G -modules vs. Picard Categories Theorem (H) Let A , B , and D be bicategories, and assume that A has all bicategorical limits (dually, colimits) of shape D . Then for any F : D → PsFunk ( B , A ) , Lim F exists and all its data are computed objectwise. Dually, the same holds for Colim F. Proposition Any biadjunction F ⊣ G between bicategories A and B yields for any bicategory D a biadjunction F D ⊣ G D between PsFunk ( D , A ) and PsFunk ( D , B ) . Michael Horst OSU

  12. Projective Picard categories Definition P ∈ Pic is projective if for all P H ∼ = B C G with G essentially surjective, such a lift exists. Problems: No homological rephrasing P is projective if and only if P = Z ⊕ κ = Z [ G ] for discrete G Michael Horst OSU

  13. Relative projective Picard categories Definition (H) P ∈ Pic is relative projective if for all P H ∼ = A B C F G ϕ 0 with G essentially surjective and ϕ -full, such a lift exists. “ ϕ -full” is a generalization of full Michael Horst OSU

  14. Relative projective Picard categories Definition, rephrased P ∈ Pic is relative projective if for all P H ∼ = A B C 0 0 0 0 F G ϕ 0 with row relative exact at C , such a lift exists. Michael Horst OSU

  15. Relative projective Picard categories Theorem (H) P ∈ Pic is relative projective if and only if Pic ( P , ) is relative exact. But not all free Picard categories are relative projective! Proposition (H) Z [ G ] is relative projective if and only if for all G ∈ G , End ( G ) is free. Proposition (H) For free A ∈ Ab , Σ A ∈ Pic is relative projective but not free. Michael Horst OSU

  16. Thank you ∼ ! Michael Horst OSU

  17. References J. C. Baez and A. D. Lauda, Higher-dimensional algebra. v: 2-groups. , Theory and Applications of Categories [electronic only] 12 (2004), 423–491. A. del R´ ıo, J. Mart´ ınez-Moreno, and E. Vitale, Chain complexes of symmetric categorical groups. , J. Pure Appl. Algebra 196 (2005), no. 2-3, 279–312. doi:10.1016/j.jpaa.2004.08.029 M. Dupont, Abelian Categories in dimension 2. , Ph.D. thesis, Universit´ e catholique de Louvain, 2008. arXiv:0809.1760 N. Gurski, N. Johnson, and A. M. Osorno, Star product on Picard Categories. , 2018, personal correspondence. N. Johnson and A. M. Osorno, Modeling stable one-types. , Theory Appl. Categ. 26 (2012), 520–537. M. Kapranov, Supergeometry in mathematics and physics. , 2015. arXiv:1512.07042 T. Pirashvili, On Abelian 2-categories and derived 2-functors. , 2010. arXiv:1007.4138 , Projective and injective symmetric categorical groups and duality. , Proc. Am. Math. Soc. 143 (2015), no. 3, 1315–1323. doi:10.1090/S0002-9939-2014-12354-9 Michael Horst OSU

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend