contextuality cohomology and paradox
play

Contextuality, Cohomology, and Paradox (arXiv:1502.03097) Samson A - PowerPoint PPT Presentation

Contextuality, Cohomology, and Paradox (arXiv:1502.03097) Samson A bramsky , Rui Soares B arbosa , Kohei K ishida , Ray L al , and Shane M ansfield (speaking) QPL2015 17 July, 2015 Outline 1 Topological model for contextuality. 2 Cohomology:


  1. 0 • • 0 • • 0 Hardy model: • 1 • 00 01 10 11 • 1 a 0 b 0 1 1 1 1 • 1 a 0 b 1 0 1 1 1 b 1 a 1 b 0 0 1 1 1 • a 1 b 1 1 1 1 0 • a 1 a 0 • • b 0 7

  2. 0 • • 0 • • 0 Hardy model: • 1 • 00 01 10 11 • 1 a 0 b 0 1 1 1 1 • 1 a 0 b 1 0 1 1 1 b 1 a 1 b 0 0 1 1 1 • a 1 b 1 1 1 1 0 • a 1 a 0 • • b 0 7

  3. 0 • • 0 • • 0 Hardy model: • 1 • 00 01 10 11 • 1 a 0 b 0 1 1 1 1 • 1 a 0 b 1 0 1 1 1 b 1 a 1 b 0 0 1 1 1 • a 1 b 1 1 1 1 0 • a 1 a 0 • • b 0 7

  4. 0 • • 0 • • 0 Hardy model: • 1 • 00 01 10 11 • 1 a 0 b 0 1 1 1 1 • 1 a 0 b 1 0 1 1 1 b 1 a 1 b 0 0 1 1 1 • a 1 b 1 1 1 1 0 • a 1 a 0 • • b 0 Global section: λ ( a 0 , a 1 , b 0 , b 1 ) �→ (1 , 0 , 1 , 0) . 7

  5. 0 • • 0 • • 0 Hardy model: • 1 • 00 01 10 11 • 1 a 0 b 0 1 1 1 1 • 1 a 0 b 1 0 1 1 1 b 1 a 1 b 0 0 1 1 1 • a 1 b 1 1 1 1 0 • a 1 a 0 • • b 0 Global section: λ ( a 0 , a 1 , b 0 , b 1 ) �→ (1 , 0 , 1 , 0) . 7

  6. 0 • • 0 • • 0 Hardy model: • 1 • 00 01 10 11 • 1 a 0 b 0 1 1 1 1 • 1 a 0 b 1 0 1 1 1 b 1 a 1 b 0 0 1 1 1 • a 1 b 1 1 1 1 0 • a 1 a 0 • • b 0 Global section: λ ( a 0 , a 1 , b 0 , b 1 ) �→ (1 , 0 , 1 , 0) . 7

  7. 0 • • 0 • • 0 Hardy model: • 1 • 00 01 10 11 • 1 a 0 b 0 1 1 1 1 • 1 a 0 b 1 0 1 1 1 b 1 a 1 b 0 0 1 1 1 • a 1 b 1 1 1 1 0 • a 1 a 0 • • b 0 Global section: λ ( a 0 , a 1 , b 0 , b 1 ) �→ (1 , 0 , 1 , 0) . 7

  8. 0 • • 0 • • 0 Hardy model: • 1 • 00 01 10 11 • 1 a 0 b 0 1 1 1 1 • 1 a 0 b 1 0 1 1 1 b 1 a 1 b 0 0 1 1 1 • a 1 b 1 1 1 1 0 • a 1 a 0 • • b 0 Global section: λ ( a 0 , a 1 , b 0 , b 1 ) �→ (1 , 0 , 1 , 0) . 7

  9. 0 • • 0 • • 0 Hardy model: • 1 • 00 01 10 11 • 1 a 0 b 0 1 1 1 1 • 1 a 0 b 1 0 1 1 1 b 1 a 1 b 0 0 1 1 1 • a 1 b 1 1 1 1 0 • a 1 a 0 • • b 0 Global section: λ ( a 0 , a 1 , b 0 , b 1 ) �→ (1 , 0 , 1 , 0) . 7

  10. 0 • • 0 • • 0 Hardy model: • 1 • 00 01 10 11 • 1 a 0 b 0 1 1 1 1 • 1 a 0 b 1 0 1 1 1 b 1 a 1 b 0 0 1 1 1 • a 1 b 1 1 1 1 0 • a 1 a 0 • • b 0 Global section: λ ( a 0 , a 1 , b 0 , b 1 ) �→ (1 , 0 , 1 , 0) . 7

  11. 0 • • 0 • • 0 Hardy model: • 1 • 00 01 10 11 • 1 a 0 b 0 1 1 1 1 • 1 a 0 b 1 0 1 1 1 b 1 a 1 b 0 0 1 1 1 • a 1 b 1 1 1 1 0 • a 1 a 0 • • b 0 Global section: λ ( a 0 , a 1 , b 0 , b 1 ) �→ (1 , 0 , 1 , 0) . 7

  12. 0 • • 0 • • 0 Hardy model: • 1 • 00 01 10 11 • 1 a 0 b 0 1 1 1 1 • 1 a 0 b 1 0 1 1 1 b 1 a 1 b 0 0 1 1 1 • a 1 b 1 1 1 1 0 • a 1 a 0 • • b 0 Global section: λ ( a 0 , a 1 , b 0 , b 1 ) �→ (1 , 0 , 1 , 0) . 7

  13. 0 • • 0 • • 0 Hardy model: • 1 • 00 01 10 11 • 1 a 0 b 0 1 1 1 1 • 1 a 0 b 1 0 1 1 1 b 1 a 1 b 0 0 1 1 1 • a 1 b 1 1 1 1 0 • a 1 a 0 • • b 0 Global section: λ ( a 0 , a 1 , b 0 , b 1 ) �→ (1 , 0 , 1 , 0) . Logical contextuality: Not all sections extend to global ones. 7

  14. 0 • • 0 • • 0 Hardy model: • 1 • 00 01 10 11 • 1 a 0 b 0 1 1 1 1 • 1 a 0 b 1 0 1 1 1 b 1 a 1 b 0 0 1 1 1 • a 1 b 1 1 1 1 0 • a 1 a 0 • • b 0 Global section: λ ( a 0 , a 1 , b 0 , b 1 ) �→ (1 , 0 , 1 , 0) . Logical contextuality: Not all sections extend to global ones. Local consistency, global inconsistency 7

  15. Hardy: • • 0 • • 0 • 1 • • 1 • 1 b 1 • • a 1 a 0 • • b 0 Logical contextuality: Not all sections extend to global. 8

  16. PR box: 00 01 10 11 a 0 b 0 1 0 0 1 a 0 b 1 1 0 0 1 a 1 b 0 1 0 0 1 a 1 b 1 0 1 1 0 Logical contextuality: Not all sections extend to global. 8

  17. PR box: • • 0 • • 0 00 01 10 11 • 1 • • 1 a 0 b 0 1 0 0 1 • 1 a 0 b 1 1 0 0 1 a 1 b 0 1 0 0 1 b 1 • a 1 b 1 0 1 1 0 • a 1 a 0 • • b 0 Logical contextuality: Not all sections extend to global. 8

  18. PR box: • • 0 • • 0 00 01 10 11 • 1 • • 1 a 0 b 0 1 0 0 1 • 1 a 0 b 1 1 0 0 1 a 1 b 0 1 0 0 1 b 1 • a 1 b 1 0 1 1 0 • a 1 a 0 • • b 0 Logical contextuality: Not all sections extend to global. 8

  19. PR box: • • 0 • • 0 00 01 10 11 • 1 • • 1 a 0 b 0 1 0 0 1 • 1 a 0 b 1 1 0 0 1 a 1 b 0 1 0 0 1 b 1 • a 1 b 1 0 1 1 0 • a 1 a 0 • • b 0 Logical contextuality: Not all sections extend to global. 8

  20. PR box: • • 0 • • 0 00 01 10 11 • 1 • • 1 a 0 b 0 1 0 0 1 • 1 a 0 b 1 1 0 0 1 a 1 b 0 1 0 0 1 b 1 • a 1 b 1 0 1 1 0 • a 1 a 0 • • b 0 Logical contextuality: Not all sections extend to global. 8

  21. PR box: • • 0 • • 0 00 01 10 11 • 1 • • 1 a 0 b 0 1 0 0 1 • 1 a 0 b 1 1 0 0 1 a 1 b 0 1 0 0 1 b 1 • a 1 b 1 0 1 1 0 • a 1 a 0 • • b 0 Logical contextuality: Not all sections extend to global. 8

  22. Hardy: PR box: • • • 0 • 0 • • • • 0 0 • 1 • 1 • • • • 1 1 • 1 • 1 b 1 b 1 • • • a 1 • a 1 a 0 a 0 • • • b 0 • b 0 Logical contextuality: Not all sections extend to global. 8

  23. Hardy: PR box: • • • 0 • 0 • • • • 0 0 • 1 • 1 • • • • 1 1 • 1 • 1 b 1 b 1 • • • a 1 • a 1 a 0 a 0 • • • b 0 • b 0 Logical contextuality: Not all sections extend to global. 8

  24. Hardy: PR box: • • • 0 • 0 • • • • 0 0 • 1 • 1 • • • • 1 1 • 1 • 1 b 1 b 1 • • • a 1 • a 1 a 0 a 0 • • • b 0 • b 0 Logical contextuality: Not all sections extend to global. 8

  25. Hardy: PR box: • • • 0 • 0 • • • • 0 0 • 1 • 1 • • • • 1 1 • 1 • 1 b 1 b 1 • • • a 1 • a 1 a 0 a 0 • • • b 0 • b 0 Logical contextuality: Not all sections extend to global. Strong contextuality: No global section at all. 8

  26. Hardy: PR box: • • • 0 • 0 • • • • 0 0 • 1 • 1 • • • • 1 1 • 1 • 1 b 1 b 1 • • • a 1 • a 1 a 0 a 0 • • • b 0 • b 0 Logical contextuality: Not all sections extend to global. Strong contextuality: No global section at all. Hieararchy of contextuality: Probabilistic ⊋ Logical ⊋ Strong contextuality 8

  27. Hardy: • • • 0 • • • • 0 0 • • 1 0 • • • 1 1 • 1 • 1 b 1 c • • • a 1 a 0 • • b • a • b 0 Logical contextuality: Not all sections extend to global. Strong contextuality: No global section at all. Hieararchy of contextuality: Probabilistic ⊋ Logical ⊋ Strong contextuality 8

  28. Contextuality in Logical Paradoxes x ∈ X F ( x ) → X in logic terms: Read bundles π : ∑ x ∈ X are sentences, t , ff ∈ F ( x ) are truth values. t 9

  29. Contextuality in Logical Paradoxes x ∈ X F ( x ) → X in logic terms: Read bundles π : ∑ x ∈ X are sentences, t , ff ∈ F ( x ) are truth values. t “West is true” • • “North is false” • “South is true” • “East is true” 9

  30. Contextuality in Logical Paradoxes x ∈ X F ( x ) → X in logic terms: Read bundles π : ∑ x ∈ X are sentences, t , ff ∈ F ( x ) are truth values. t “West is true” • • “North is false” • “South is true” • “East is true” 9

  31. Contextuality in Logical Paradoxes t t • • t t • • t t • ff • • ff • ff “West is true” • • “North is false” • “South is true” • “East is true” 9

  32. Contextuality in Logical Paradoxes t t • • t t • • t t • ff • • ff • ff “West is true” • • “North is false” • “South is true” • “East is true” 9

  33. Contextuality in Logical Paradoxes t t • • t t • • t t • ff • • ff • ff “West is true” • • “North is false” • “South is true” • “East is true” 9

  34. Contextuality in Logical Paradoxes t t • • t t • • t t • ff • • ff • ff “West is true” • • “North is false” • “South is true” • “East is true” 9

  35. Contextuality in Logical Paradoxes t t • • t t • • t t • ff • • ff • ff “West is true” • • “North is false” • “South is true” • “East is true” 9

  36. Contextuality in Logical Paradoxes t t • • t t • • t t • ff • • ff • ff “West is true” • • “North is false” • “South is true” • “East is true” 9

  37. Contextuality in Logical Paradoxes t t • • t t • • t t • ff • • ff • ff “West is true” • • “North is false” • “South is true” • “East is true” 9

  38. Contextuality in Logical Paradoxes t t • • t t • • t t • ff • • ff • ff “West is true” • • “North is false” • “South is true” • “East is true” This type of logical paradoxes (incl. the Liar Paradox) have the same topology as “paradoxes” of (strong) contextuality. 9

  39. How to Formally Define ... Bundles that correspond to no-signalling possibility tables. • • • • • • • • • • • • 10

  40. How to Formally Define ... Bundles that correspond to no-signalling possibility tables. Two equivalent formulations: • • • • • • • • • • • • 10

  41. How to Formally Define ... Bundles that correspond to no-signalling possibility tables. Two equivalent formulations: 1 Map of • simplicial complexes • • • ∑ π : F ( x ) → X . Σ • • x ∈ X • • π • (With some axioms, • e.g. no-signalling.) X • • 10

  42. How to Formally Define ... Bundles that correspond to no-signalling possibility tables. Two equivalent formulations: 1 Map of • simplicial complexes • • • ∑ π : F ( x ) → X . Σ • • x ∈ X • • π • (With some axioms, • e.g. no-signalling.) X • • 10

  43. How to Formally Define ... Bundles that correspond to no-signalling possibility tables. Two equivalent formulations: 1 Map of • simplicial complexes • • • ∑ π : F ( x ) → X . Σ • • x ∈ X • • π • (With some axioms, • e.g. no-signalling.) X • • 10

  44. How to Formally Define ... Bundles that correspond to no-signalling possibility tables. Two equivalent formulations: 1 Map of • simplicial complexes • • • ∑ π : F ( x ) → X . Σ • • x ∈ X • • π • (With some axioms, • e.g. no-signalling.) X • • 10

  45. How to Formally Define ... Bundles that correspond to no-signalling possibility tables. Two equivalent formulations: 1 Map of • simplicial complexes • • • ∑ π : F ( x ) → X . Σ • • x ∈ X • • π • (With some axioms, • e.g. no-signalling.) X • • 10

  46. How to Formally Define ... Bundles that correspond to no-signalling possibility tables. Two equivalent formulations: 1 Map of • simplicial complexes • • • ∑ π : F ( x ) → X . Σ Sets • • x ∈ X • 2 Presheaf • π F F : C ( X ) op → Sets . • (With some axioms, • C ( X ) op e.g. no-signalling.) X • • 10

  47. How to Formally Define ... Bundles that correspond to no-signalling possibility tables. Two equivalent formulations: 1 Map of • simplicial complexes • • • ∑ π : F ( x ) → X . Σ Sets • • x ∈ X • 2 Presheaf • π F F : C ( X ) op → Sets . • (With some axioms, • C ( X ) op e.g. no-signalling.) X • • 10

  48. How to Formally Define ... Bundles that correspond to no-signalling possibility tables. Two equivalent formulations: 1 Map of • simplicial complexes • • • ∑ π : F ( x ) → X . Σ Sets • • x ∈ X • 2 Presheaf • π F F : C ( X ) op → Sets . • (With some axioms, • C ( X ) op e.g. no-signalling.) X • • 10

  49. How to Formally Define ... Bundles that correspond to no-signalling possibility tables. Two equivalent formulations: 1 Map of • simplicial complexes • • • ∑ π : F ( x ) → X . Σ Sets • • x ∈ X • 2 Presheaf • π F F : C ( X ) op → Sets . • (With some axioms, • C ( X ) op e.g. no-signalling.) X • • 10

  50. How to Formally Define ... Bundles that correspond to no-signalling possibility tables. Two equivalent formulations: 1 Map of • simplicial complexes • • • ∑ π : F ( x ) → X . Σ Sets • • x ∈ X • 2 Presheaf • π F F : C ( X ) op → Sets . • (With some axioms, • C ( X ) op e.g. no-signalling.) X • • 10

  51. How to Formally Define ... Bundles that correspond to no-signalling possibility tables. Two equivalent formulations: 1 Map of • simplicial complexes • • • ∑ π : F ( x ) → X . Σ Sets • • x ∈ X • 2 Presheaf • π F F : C ( X ) op → Sets . • (With some axioms, • C ( X ) op e.g. no-signalling.) X • • 10

  52. How to Formally Define ... Bundles that correspond to no-signalling possibility tables. Two equivalent formulations: 1 Map of • simplicial complexes • • • ∑ π : F ( x ) → X . Σ Sets • • x ∈ X • 2 Presheaf • π F F : C ( X ) op → Sets . • (With some axioms, • C ( X ) op e.g. no-signalling.) X • (Global sections can be • defined suitably.) 10

  53. How to Formally Define ... Bundles that correspond to no-signalling possibility tables. Two equivalent formulations: 1 Map of • simplicial complexes • • • ∑ π : F ( x ) → X . Σ Sets • • x ∈ X • 2 Presheaf • π F F : C ( X ) op → Sets . • (With some axioms, • C ( X ) op e.g. no-signalling.) X • (Global sections can be • defined suitably.) 2 makes it possible to apply cohomology. 10

  54. Cohomology of Contextuality Local consistency, global inconsistency.. . Penrose 1991, “On the Cohomology of Impossible Figures”. 11

  55. Cohomological test for contextuality: “ ˇ Cech cohomology” gives a group homomorphism γ that assigns to each section s an “obstruction” γ s s.th. • • 0 • • 0 • 1 • • 1 • 1 b 1 • • a 1 a 0 • • b 0 12

  56. Cohomological test for contextuality: “ ˇ Cech cohomology” gives a group homomorphism γ that assigns to each section s an “obstruction” γ s s.th. s extends to a “cocycle” ⇐⇒ γ s = 0. • • 0 • • 0 • 1 • • 1 • 1 b 1 • • a 1 a 0 • • b 0 12

  57. Cohomological test for contextuality: “ ˇ Cech cohomology” gives a group homomorphism γ that assigns to each section s an “obstruction” γ s s.th. s extends to a “cocycle” ⇐⇒ γ s = 0. • • 0 • • 0 • 1 • • 1 • 1 b 1 • • a 1 a 0 • • b 0 12

  58. Cohomological test for contextuality: “ ˇ Cech cohomology” gives a group homomorphism γ that assigns to each section s an “obstruction” γ s s.th. s extends to a “cocycle” ⇐⇒ γ s = 0. • • 0 • • 0 • 1 • • 1 • 1 b 1 • • a 1 a 0 • • b 0 12

  59. Cohomological test for contextuality: “ ˇ Cech cohomology” gives a group homomorphism γ that assigns to each section s an “obstruction” γ s s.th. s extends to a “cocycle” ⇐⇒ γ s = 0. ⇒ • s extends to global • 0 • • 0 • 1 • • 1 • 1 b 1 • • a 1 a 0 • • b 0 12

  60. Cohomological test for contextuality: “ ˇ Cech cohomology” gives a group homomorphism γ that assigns to each section s an “obstruction” γ s s.th. s extends to a “cocycle” ⇐⇒ γ s = 0. ⇒ ⇍ • s extends to global • 0 • • 0 • 1 • • 1 • 1 b 1 • • a 1 a 0 • • b 0 12

  61. Cohomological test for contextuality: “ ˇ Cech cohomology” gives a group homomorphism γ that assigns to each section s an “obstruction” γ s s.th. s extends to a “cocycle” ⇐⇒ γ s = 0. ⇒ ⇍ • s extends to global • 0 • • 0 • False positives, • 1 • e.g. in Hardy model: • 1 • 1 b 1 • • a 1 a 0 • • b 0 12

  62. Cohomological test for contextuality: “ ˇ Cech cohomology” gives a group homomorphism γ that assigns to each section s an “obstruction” γ s s.th. s extends to a “cocycle” ⇐⇒ γ s = 0. ⇒ ⇍ • s extends to global • 0 • • 0 • False positives, • 1 • e.g. in Hardy model. • 1 • Works for many cases; • 1 e.g. PR box: b 1 • • a 1 a 0 • • b 0 12

  63. “All vs Nothing” Argument 13

  64. “All vs Nothing” Argument Joint outcomes may / may not • satisfy parity equations: • 0 • • (0 , 0) � x ⊕ � = 0 0 • 1 (0 , 1) � x ⊕ � = 1 • 0 • 1 (1 , 0) � x ⊕ � = 1 • 1 (1 , 1) � x ⊕ � = 0 b 1 • • a 1 a 0 • • b 0 13

  65. “All vs Nothing” Argument Joint outcomes may / may not • satisfy parity equations: • 0 • • (0 , 0) � x ⊕ � = 0 0 • 1 (0 , 1) � x ⊕ � = 1 • • 1 (1 , 0) � x ⊕ � = 1 • 1 (1 , 1) � x ⊕ � = 0 b 1 a 0 ⊕ b 0 = 0 • a 0 ⊕ b 1 = 0 • a 1 a 1 ⊕ b 0 = 0 a 0 • a 1 ⊕ b 1 = 1 • b 0 13

  66. “All vs Nothing” Argument Joint outcomes may / may not • satisfy parity equations: • 0 • • (0 , 0) � x ⊕ � = 0 0 • 1 (0 , 1) � x ⊕ � = 1 • • 1 (1 , 0) � x ⊕ � = 1 • 1 (1 , 1) � x ⊕ � = 0 b 1 a 0 ⊕ b 0 = 0 • a 0 ⊕ b 1 = 0 • a 1 a 1 ⊕ b 0 = 0 a 0 • a 1 ⊕ b 1 = 1 • b 0 ⊕ ⊕ LHS’s = RHS’s 13

  67. “All vs Nothing” Argument Joint outcomes may / may not • satisfy parity equations: • 0 • • (0 , 0) � x ⊕ � = 0 0 • 1 (0 , 1) � x ⊕ � = 1 • • 1 (1 , 0) � x ⊕ � = 1 • 1 (1 , 1) � x ⊕ � = 0 b 1 a 0 ⊕ b 0 = 0 • a 0 ⊕ b 1 = 0 • a 1 a 1 ⊕ b 0 = 0 a 0 • a 1 ⊕ b 1 = 1 • b 0 ⊕ ⊕ LHS’s � RHS’s The equations are inconsistent, 13

  68. “All vs Nothing” Argument Joint outcomes may / may not • satisfy parity equations: • 0 • • (0 , 0) � x ⊕ � = 0 0 • 1 (0 , 1) � x ⊕ � = 1 • • 1 (1 , 0) � x ⊕ � = 1 • 1 (1 , 1) � x ⊕ � = 0 b 1 a 0 ⊕ b 0 = 0 • a 0 ⊕ b 1 = 0 • a 1 a 1 ⊕ b 0 = 0 a 0 • a 1 ⊕ b 1 = 1 • b 0 ⊕ ⊕ LHS’s � RHS’s The equations are inconsistent, i.e. no global assignment to a 0 , a 1 , b 0 , b 1 , i.e. strongly contextual! 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend