making relativistic shocks with a spectral 1d pic code
play

Making relativistic shocks with a spectral 1D PIC code UZEIN I. - PowerPoint PPT Presentation

Making relativistic shocks with a spectral 1D PIC code UZEIN I. Plotnikov (IPAG), B. Lembge (LATMOS) october 3th 2012 1/1 PIC IAP 2012 Particles-In-Cells (PIC) codes : Principles Birdsall&Langdon 1985 Plasma Physics via Computer


  1. Making relativistic ⊥ shocks with a spectral 1D PIC code UZEIN I. Plotnikov (IPAG), B. Lembège (LATMOS) october 3th 2012 1/1 PIC IAP 2012

  2. Particles-In-Cells (PIC) codes : Principles Birdsall&Langdon 1985 “Plasma Physics via Computer Simulation” , Dawson 1983 Scheme of 1 iteration Finite size macroparticles : shape Eq. mvt. (x, v) Interpolation factors Interpolation grille -> part. part. -> grille Time step : ∆ t < 0 . 2 ω − 1 pe ; Force Lorentz Densité Grid step : ∆ x ∼ λ D ; sur grille et courant CFL stability criterion : c ∆ t < ∆ x ; Relativistic bias : grid-Cerenkov Eq. Maxwell. radiation Champs Elec. et Magn. 2/1 PIC IAP 2012

  3. UZEIN 1D code : Lembège & Dawson 1986 Normalisation : Move particles : d � p i � p i q i ( � γ i m i c × � x = E + B ) x ˜ = d t ∆ ˜ = ω pe t t Solved by time-centered finite difference method. v ˜ v = ω pe ∆ Update fields on grid ( x → k transformed) : p α p α ˜ = m α ω pe ∆ E x ( k x ) = − i 4 πρ ( k x ) / k x q E ˜ ∂ B y E = = ick x E x ( k x ) m e ω 2 pe ∆ ∂ t q B ∂ B z ˜ B = = − ick x E y ( k x ) m e ω 2 pe ∆ ∂ t ∂ E y J ˜ = − ick x B z ( k x ) − 4 π J y ( k x ) = J ∂ t q ω pe ∆ ∂ E z J � � = ick x B y ( k x ) − 4 π J z ( k x ) and not ∂ t n 0 q ω pe ∆ 3/1 PIC IAP 2012

  4. Input parameters and physical quantities Example set of input parameters for Hada et al. 03 simulation : Param. Valeur Quant. Valeur ∆ x 1 ˜ ρ L , e 0.4 0.1 ω − 1 ∆ t ρ L , i ˜ 26.74 pe ˜ c 3 ∆ x · ω pe ω pe 1 n 0 50 part/ ∆ /spec ω pi 0.1 J 0 -110 λ De = V th , e 0.2 B 0 1.5 ω ce 0.5 Θ 0 90 ω ci 0.006 m i / m e 84 V A 0.149 T e / T i 1.58 β e 0.0356 4/1 PIC IAP 2012

  5. A realistic simulation ? Some numbers : For an electron-proton shock in the ISM ω pe ≃ 10 4 s − 1 we need : ∆ t inf 10 − 4 ω − 1 pe 1 m i / m e = 1835 ρ I = 10 5 ∆ 2 c / v A ≃ c / c s ≃ 10 4 1 Ω CI ∼ 310 9 ∆ t 3 T simulation ≥ Ω − 1 ci . Box length = 10 6 − 10 8 ∆ , and N p > 10 8 In the code fiducial setup we have : ∆ t = 0 . 1 ω − 1 pe 1 m i / m e ∼ 100 ρ I ∼ 10 2 ∆ 2 c / v A ≃ c / c s ≃ 10 1 Ω CI = 10 2 − 10 3 ∆ t 3 T simulation ≥ Ω − 1 ci . Box length = 10 4 ∆ , and N p < 10 7 → Need to focus on relevant physics. 5/1 PIC IAP 2012

  6. 1D PIC Shock structure Non-relativistic... Kinetic structure 1D PIC shock Downstream Upstream Vs Reflected Ions Thermalized ions and elecs Rankine-Hugeniot conditions ± ok. Px Shock front reformation (non-rel). Blue: ions Black: elecs Electron heating. X 6/1 PIC IAP 2012

  7. 3 different methods tested 1 Magnetic Piston 2 Reflexion on wall 3 Beam injection in the plasma at rest 7/1 PIC IAP 2012

  8. Piston method (1) Electron-ion simulation (phase space X-Px) Electron-positron simulation ( V s = 0 . 97 c ) (e.g. Hada et al. 03) 8/1 PIC IAP 2012

  9. Piston method (2) Relativistic electron-ion shock ? Need J 0 >> 0, non-linear behavior V s = f ( J 0 ) . Difficult to control the shock speed and go up to the relativistic regime. Other methods tested. 9/1 PIC IAP 2012

  10. Reflexion of bulk plasma on a wall (1) Most popular method, but not suited to the spectral code... k = 0 problem. v in � v × � Difficult to handle � E 0 + � B 0 = 0 in all plasma components. Moderate injection speed + low Moderate injection speed + high magnetisation : magnetisation : 10/1 PIC IAP 2012

  11. Beam injection in a plasma at rest (1) Blue: ions x-px Plasma at rest Vacuum Vacuum Black: elecs x-px n0=40 part/cell/species t=0 Vacuum Vacuum Plasma at rest 0<t<T(form) Beam inj. (n_b) Down SF Vacuum CD Vacuum Up t>>T(form) 11/1 PIC IAP 2012

  12. Beam injection (2) : non-relativistic "Benchmarks" Biskamp & Welter 72 (Whistlers) Hoshino & Shimada 2002 Hada et al. 03 Scholer & Matsukiyo 04 12/1 PIC IAP 2012

  13. Beam injection (3) : Variyng the γ beam Parameters : n b = n 0 , ˜ c = 3, γ b ∈ [ 1 , 30 ] . Example : γ b = 3 . 12 V S / c = 0 . 76, γ S = 1 . 54 Buneman instability in the shock foot. Shock reformation at τ ref ∼ τ ci / 3. 13/1 PIC IAP 2012

  14. Beam injection (4) : Variyng the γ beam Parameters : n b = n 0 , ˜ c = 3, γ b ∈ [ 1 , 30 ] . Shock formation time and shock speed as function of the beam speed. m i / m e .vs. T form γ b .vs. T form γ b .vs. γ S γ s .vs. n d / n 0 14/1 PIC IAP 2012

  15. Beam injection (5) : Highly magnetised plasma Animation : red line : B z / 4, magenta : � E x / 4. Black dots u x , elec / m i / m e . Distributions downstream V S ≃ 0 . 9 c . 15/1 PIC IAP 2012

  16. Conclusions and Perspectives 1 Difficult to deal with initial inhomogeneous plasma drifts in a spectral code. 2 Time formation for a relativistic shock... 3 Electron acceleration ? 16/1 PIC IAP 2012

  17. Thank You ! 17/1 PIC IAP 2012

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend