shock wave in the friedmann robertson walker space time e
play

Shock wave in the FriedmannRobertson-Walker space-time E.O. - PowerPoint PPT Presentation

Shock wave in the FriedmannRobertson-Walker space-time E.O. Pozdeeva Moscow Aviation Institute Bogoliubov Readings 2010 based on work by I. Ya. Arefeva, E.O. Pozdeeva and A.A. Bagrov 1 According to t Hooft 1 shock waves 2 in


  1. Shock wave in the Friedmann–Robertson-Walker space-time E.O. Pozdeeva Moscow Aviation Institute Bogoliubov Readings – 2010 based on work by I. Ya. Aref’eva, E.O. Pozdeeva and A.A. Bagrov 1

  2. • According to ’t Hooft 1 shock waves 2 in the Minkowski space- time can be used to describe ultrarelativistic particles collisions. • The shock gravitational waves are also know in (A)dS back- ground. They are ultrarelativistic limits of Schwarzschild-(A)dS metrics 3 1 G. ’t Hooft, Phys. Lett. B. 198 , 61, 1987. 2 P.C. Aichelburg and R.U. Sexl, Gen. Relat. and Grav. , V.2 4 , 1971, 303. 3 M. Hotta, M. Tanaka, Clas. Quan. Grav. , 10 (1993) 307–314. K. Sfetsos, Nucl. Phys. B 436 721, 1995. G. T. Horowitz and N. Itzhaki, JHEP 02 453, 1999. J. Podolsky and J.B. Griffiths, Phys. lett A 261 , 1999. R. Emparran, Phys. Rev. D 64 024025, 2001. G. Esposito, R. Pettorino and P. Scudellaro, Int.J.Geom.Meth.Mod.Phys. , 4 ,361, 2007. I.Ya. Aref’eva, A.A. Bagrov and L.V. Joukovskaya, Algebra and analysis 22(3) , 3, 2010. 2

  3. • Shock waves in AdS and in dS can be used to describe ultra relativistic particles collisions too 4 4 S. S. Gubser, S. S. Pufu, A. Yarom, Phys.Rev.D , 78 , 2008, 066014 I.Ya. Aref’eva, A.A. Bagrov and E.A. Guseva, JHEP , 0912 ,009, 2009. 3

  4. • In this talk the generalization of this construction for the ultra- relativistic particles in the Friedmann-Robertson-Walker space- time is presented. 4

  5. • McVittie metric 5 in cosmological coordinates is � � 2 m � � 4 1 − 2 a ( t ) ρ m dS 2 = − � 2 dt 2 + a ( t ) 2 ( ρ 2 d Ω 2 + dρ 2 ) , 1 + � 2 a ( t ) ρ m 1 + 2 a ( t ) ρ d Ω 2 = sin 2 θdφ 2 + dθ 2 , where a ( t ) is arbitrary function of t. 5 G. C. McVittie, Mon. Not. R. Astron. Soc. 93, 325 (1933). N. Kalopery, M. Klebanz and D. Martiny, McVittie’s Legacy: Black Holes in an Expanding Universe, arXiv:1003.4777. 5

  6. Some interesting cases of function a ( t ) corresponds to the fol- lowing types of universes expansion: • for a ( t ) = 1 , the Hubble parameter H = 0 , reduces McVittie metric to the Schwarzschild black hole of mass m, • for a ( t ) = e Ht , the Hubble parameter H = const, reduces McVittie metric to de Sitter-Schwarzschild black hole of mass m, • for a ( t ) = k 2 t n , the Hubble parameter H = ˙ a a = n t . 6

  7. Shock wave in Minkowski space-time The Schwarzschild black hole metric in Minkowski space-time: 4 = − (1 − A 2 ) 1 + A 2 dt 2 + (1 + A ) 4 ( dx 2 + dy 2 + dz 2 ) , ds 2 (1) A = m r 2 = x 2 + y 2 + z 2 . 2 r, The first order small mass approximation ds 2 1 = ds 2 4 M + 4 A ( ds 2 4 M + 2 dt 2 ) , ds 4 M = ds 4 | A =0 . 7

  8. Shock wave in Minkowski space-time The Lorenz transformation is 1 t = γ (¯ x = γ (¯ √ t − v ¯ x ) , t − v ¯ x ) , γ = 1 − v 2 . In terms of ¯ t, ¯ x the function A is p (1 − v 2 ) A = � , where p = mγ t ) 2 + (1 − v 2 )(¯ y 2 + ¯ x − v ¯ z 2 ) 2 (¯ and x ) 2 dt 2 = ( d ¯ t − vd ¯ . 1 − v 2 Shock wave in Minkowski space-time � � 1 y 2 + ¯ t 2 − ¯ ds 2 γ = ds 2 z 2 ) 1 / 2 δ (¯ x 2 ) x )) 2 , ( d (¯ 4 M + 4 p x | − 2 ln(¯ t − ¯ | ¯ t − ¯ is obtained by the ultra relativistic limit γ → ∞ . 8

  9. Shock wave in dS space-time The Schwarzschild black hole metric in dS space-time: � � R − R 2 dR 2 1 − 2 m dS 2 = − dt 2 + � + � b 2 R − R 2 1 − 2 m b 2 + R 2 ( dθ 2 + sin 2 θdφ 2 ) . The first order small mass approximation of Schwarzschild black hole metric in dS dR 2 dS + 2 m R dt 2 + 2 m ds 2 = ds 2 ds 2 dS = dS 2 | m =0 � 2 , � R 1 − R 2 b 2 9

  10. Shock wave in dS space-time • In the plane coordinates representation the metric is: 4 � ds 2 = ds 2 5 M + ds 2 p , where ds 2 5 M = − dZ 2 dZ 2 0 + i , i =1 2 mb 2 ds 2 p = 4 ) 3 / 2 × 0 ) 2 ( b 2 + Z 2 ( Z 2 4 − Z 2 0 − Z 2 (( b 2 ( Z 2 4 + Z 2 0 ) + Z 2 0 Z 2 4 − Z 4 4 ) dZ 2 0 − − 2(2 b 2 + Z 2 0 − Z 2 4 ) dZ 0 dZ 4 + ( b 2 ( Z 2 4 + Z 2 0 ) + Z 4 0 − Z 2 0 Z 2 4 ) dZ 2 4 ) . • The 4D hyperboloid condition to the coordinates in dS: 4 � − Z 2 Z 2 i = b 2 . 0 + i =1 10

  11. Shock wave in dS space-time • The Lorenz transformation along Z 1 coordinate: Z 0 = γ ( Y 0 + vY 1 ) , Z 1 = γ ( vY 0 + Y 1 ) . is applied to first order small mass approximation of Schwarzschild black hole in dS with mass rescaling m = p/γ . • Shock wave in Minkowski space-time is 4 � ds 2 γ = − dY 2 dY 2 0 + i + i =1 � � b + Y 4 �� − 2 + Y 4 δ ( Y 0 + Y 1 )( d ( Y 0 + Y 4 )) 2 . + 4 p b ln b − Y 4 11

  12. Shock wave in Friedmann-Robertson-Walker space-time Coordinates relations • For description ultrarelativistic particles movement by boost in plane coordinates representation can use the relation of 5D Minkowski space-time coordinates with 4D FRW coordinates. 12

  13. Shock wave in Friedmann-Robertson-Walker space-time Coordinates relations • Connection between four-dimensional spatially flat cosmology and five-dimensional Minkowski space-time (see, for example, 6 ). ♦ Consider the 5D Minkowski metric and 4D FRW metric: dS 2 5 M = − dZ 2 0 + dZ 2 1 + dZ 2 2 + dZ 2 3 + dZ 2 4 , M 5 , D=5 , FRW = − dt 2 + a 2 ( t )( dx 2 + dy 2 + dz 2 ) , FRW, D=4 . ds 2 ♦ If a ( t ) is arbitrary function of t, then the hyperboloid condi- tion becomes non-stationary: − Z 2 0 + Z 2 1 + Z 2 2 + Z 2 3 + Z 2 4 = b 2 ( t ) 6 M. N. Smolyakov Class.Quant.Grav.25:238003,2008 13

  14. Shock wave in Friedmann-Robertson-Walker space-time Coordinates relations Figure 1: Hyperboloid for different t . 14

  15. Shock wave in Friedmann-Robertson-Walker space-time Coordinates relations • The surface is defined by: a ( t )( x 2 + y 2 + z 2 ) b 2 ( t ) Z 0 = 1 2 κ 1 a ( t ) − 1 κ 1 a ( t ) + 1 , 2 2 κ 1 a ( t )( x 2 + y 2 + z 2 ) b 2 ( t ) Z 4 = 1 2 κ 1 a ( t ) + 1 κ 1 a ( t ) − 1 , 2 2 κ 1 Z 1 = a ( t ) x, Z 2 = a ( t ) y, Z 3 = a ( t ) z. • The metric in 5D Minkowski space-time is equal to metric in 4D FRW, if the following condition relates a ( t ) with b ( t )): � da ( t ) � 2 b ( t ) + 2 da ( t ) db ( t ) b ( t ) − a ( t ) + 1 = 0 . dt a ( t ) dt dt t • In the case a ( t ) = κ 2 t n , we get b ( t ) = ± √ n ( n − 2) . 15

  16. Shock wave in Friedmann-Robertson-Walker space-time McVittie metric in small mass approximation • McVittie metric ds 2 = − (1 − µ ) 2 (1 + µ ) 2 dt 2 + a 2 ( t ) (1 + µ ) 4 ( dx 2 + dy 2 + dz 2 ) , m µ = 2 a ( t ) ρ. • First order approximation ( m 2 ∼ 0), (1 − µ ) 2 (1 + µ ) 4 ≈ 1 + 4 µ, (1 + µ ) 2 ≈ 1 − 4 µ, to McVittie’s metric is ds 2 1 = ds 2 FRW + 4 µ ( ds 2 FRW + 2 dt 2 ) . 16

  17. Shock wave in Friedmann-Robertson-Walker space-time McVittie metric in small mass approximation • For a ( t ) = k 2 t n the metric can be written in plane coordinates: � � 2 d ( Z 0 + Z 4 ) 2 5 M + 2 m ds 2 = ds 2 ds 2 � 5 M + , n 2 κ 2 1 κ 2 2 ( n ( n − 2) b 2 ( t )) n − 1 Z 2 i where b 2 ( t ) = − Z 2 0 + Z 2 i + Z 2 4 , i = 1 , 3. 17

  18. Shock wave in Friedmann-Robertson-Walker space-time Lorentz transformation • Boost in the 5-dimensional Minkowski space-time: 1 Z 0 = γ ( � Z 0 + v � Z 1 = γ ( � Z 1 + v � √ Z 1 ) , Z 0 ) , γ = 1 − v 2 . • We apply the Lorentz transformation to the McVittie metric in the first order small mass approximation: � � d ( γ ( ˜ Z 0 + v ˜ Z 1 )+ ˜ Z 4 ) 2 ds 2 2 ˜ m 5 M + 2 p 2 κ 2 1 κ 2 2 ( p ( p − 2) b 2 ( t )) p − 1 ds 2 γ = ds 2 5 M + � , ˜ m = mγ Z 1 ) 2 + ˜ γ 2 ( v ˜ Z 0 + ˜ Z 2 2 + ˜ Z 2 γ 3 18

  19. Shock wave in Friedmann-Robertson-Walker space-time Lorentz transformation or � � 5 M + 2 d ( γ ( ˜ Z 0 + v ˜ Z 1 )+ ˜ Z 4 ) 2 ds 2 2 ˜ m p 2 κ 2 1 κ 2 2 t 2( p − 1) ds 2 γ = ds 2 5 M + � . Z 1 ) 2 + ˜ γ 2 ( v ˜ Z 0 + ˜ 2 + ˜ Z 2 Z 2 γ 3 • For γ → ∞ , it is evidently that: � � d ( ˜ Z 0 + ˜ Z 1 ) 2 4 ˜ mγ ds 2 | υ → 1 → ds 2 5 M + � p 2 κ 2 1 κ 2 2 t 2( p − 1) Z 1 ) 2 + ˜ γ 2 ( ˜ Z 0 + ˜ 2 + ˜ Z 2 Z 2 3 19

  20. Shock wave in Friedmann-Robertson-Walker space-time Limiting process γ → ∞ • Limiting process γ → ∞ in generalized function meaning: ∞ ∞ � 1 � � � γ 2 U 2 + X 2 f ( U ) dU = f (0) ln 4 γ 2 γ � X 2 + f ( U ) dU | U | reg −∞ −∞ where ∞ � 1 � � f ( U ) dU ≡ | U | reg −∞ 1 − 1 ∞ � � � f ( U ) − f (0) 1 1 ≡ dU + | U | f ( U ) dU + | U | f ( U ) dU. | U | −∞ − 1 1 20

  21. Shock wave in Friedmann-Robertson-Walker space-time Limiting process γ → ∞ The result can be presented by the Dirac-delta function � � � 1 � = − δ ( U ) ln X 2 γ γ 2 U 2 + X 2 − δ ( U ) ln γ 2 lim � 4 + . | U | γ →∞ reg 21

  22. Shock wave in Friedmann-Robertson-Walker space-time Lorentz transformations in the ultrarelativistic limit the McVittie metric • After the regularization we have the gravitational waves metric 4 ¯ m ds 2 γ = ds 2 2 ( t ) 2( p − 1) δ ( U ) d ( U ) 2 , ¯ m ln γ 2 , U = Z 0 + Z 1 , 5 M + m = ˜ p 2 κ 2 1 κ 2 where � Z 0 + Z 4 � 1 /n t 2 = n ( n − 2)( − Z 2 0 + Z 2 1 + Z 3 2 + Z 2 3 + Z 2 t = , 4 ) k 1 k 2 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend