averaging robertson walker cosmologies
play

Averaging Robertson-Walker Cosmologies Iain A. Brown Institut f ur - PowerPoint PPT Presentation

Averaging Robertson-Walker Cosmologies Iain A. Brown Institut f ur Theoretische Physik, Universit at Heidelberg Backreaction from Perturbations, J. Behrend, IB and G. Robbers, JCAP 0801 013 Averaging Robertson-Walker


  1. Averaging Robertson-Walker Cosmologies Iain A. Brown Institut f¨ ur Theoretische Physik, Universit¨ at Heidelberg “Backreaction from Perturbations”, J. Behrend, IB and G. Robbers, JCAP 0801 013 ‘Averaging Robertson-Walker Cosmologies”, IB, G. Robbers and J. Behrend, in preperation Cosmo 08, Madison, 25th August 2008 1 / 23

  2. Motivation Standard Cosmology Averaging in Cosmology Backreaction Numerical Study Summary Motivation 2 / 23

  3. Standard Cosmology Copernican Principle + CMB observations ⇒ Universe homogeneous ■ Motivation Standard Cosmology and isotropic. Averaging in Cosmology Backreaction Numerical Study Summary 3 / 23

  4. Standard Cosmology Copernican Principle + CMB observations ⇒ Universe homogeneous ■ Motivation Standard Cosmology and isotropic. Averaging in Cosmology ■ Robertson-Walker cosmology: foliate spacetime with Backreaction maximally-symmetric three-spaces Numerical Study Line element: ds 2 = − dt 2 + a 2 ( t ) δ ij dx i dx j Summary — a/a ) 2 = (8 πG/ 3) ρ + Λ / 3 Friedmann equation: (˙ — Raychaudhuri equation: ¨ a/a = − (4 πG/ 3)( ρ + p ) + Λ / 3 — Perturb metric with O ( ǫ ) ≈ 10 − 5 — 3 / 23

  5. Standard Cosmology Copernican Principle + CMB observations ⇒ Universe homogeneous ■ Motivation Standard Cosmology and isotropic. Averaging in Cosmology ■ Robertson-Walker cosmology: foliate spacetime with Backreaction maximally-symmetric three-spaces Numerical Study Line element: ds 2 = − dt 2 + a 2 ( t ) δ ij dx i dx j Summary — a/a ) 2 = (8 πG/ 3) ρ + Λ / 3 Friedmann equation: (˙ — Raychaudhuri equation: ¨ a/a = − (4 πG/ 3)( ρ + p ) + Λ / 3 — Perturb metric with O ( ǫ ) ≈ 10 − 5 — ■ We have assumed the existence of an average and added perturbations 3 / 23

  6. Averaging in Cosmology ■ Motivation An implicit averaging in cosmology transfers local equations to global Standard Cosmology cosmology; should be made explicit Averaging in Cosmology � ∂ t ρ � � = ∂ t � ρ � ⇒ Na¨ ■ ıve EFE for assumed averages does not reflect a Backreaction true average of small-scale physics. Numerical Study Summary 4 / 23

  7. Averaging in Cosmology ■ Motivation An implicit averaging in cosmology transfers local equations to global Standard Cosmology cosmology; should be made explicit Averaging in Cosmology � ∂ t ρ � � = ∂ t � ρ � ⇒ Na¨ ■ ıve EFE for assumed averages does not reflect a Backreaction true average of small-scale physics. Numerical Study ■ We should be using Summary � G µν ( g µν ) � = 8 πG � T µν � + Λ � g µν � instead of G µν ( � g µν � ) = 8 πG � T µν � + Λ � g µν � . “Backreaction” may not be dark energy, but all cosmological models ■ should be properly averaged ■ Aim: Express Buchert equations in general form, apply to range of perturbed Robertson-Walker models from radiation domination to present day. 4 / 23

  8. Motivation Backreaction Formalism: 3+1 Split Formalism: Buchert Averaging Formalism: Modifications to Standard Cosmology Link to Perturbation Backreaction Theory Link to Perturbation Theory: Backreaction Terms Numerical Study Summary 5 / 23

  9. Formalism: 3+1 Split Motivation Backreaction Formalism: 3+1 Split Formalism: Buchert Averaging Formalism: Modifications to Standard Cosmology Link to Perturbation Theory Link to Perturbation Theory: Backreaction Terms Numerical Study Summary Line-element: ds 2 = − α 2 dt 2 + h ij dx i dx j ■ Fluids ( Λ , φ , b, CDM, γ , ν ): ̺ = n µ n ν T µν , j i = − n µ T iµ , S ij = T ij ■ Perfect fluids, T µν = ( ρ + p ) u µ u ν + pg µν : ■ ̺ = n µ n ν T µν = ρ ( n µ u µ ) 2 + p ( n µ u µ ) 2 − 1 � � , S = T i i = 3 p + ( ρ + p ) u i u i . 6 / 23

  10. Formalism: Buchert Averaging ■ Motivation Select average √ � A � = 1 � Backreaction hd 3 x , A Formalism: 3+1 Split V Formalism: Buchert D Averaging Define averaged “scale factor” and Hubble rate by Formalism: Modifications to Standard Cosmology ˙ √ Link to Perturbation 3 H D = 3 ˙ a D V V = − 1 � hd 3 x = − � αK � = �H� , Theory = αK Link to Perturbation a D V Theory: Backreaction D Terms Numerical Study ■ Buchert equations: Summary � ˙ � 2 a D 8 πG + Λ − 1 α 2 ̺ α 2 � � � � = 6 ( Q D + R D ) a D 3 3 a D ¨ − 4 πG + Λ + 1 α 2 ( ̺ + S ) α 2 � � � � = 3 ( Q D + P D ) a D 3 3 7 / 23

  11. Formalism: Modifications to Standard Cosmology ■ Motivation Kinematical “backreaction”: Backreaction − 2 � α 2 � K 2 − K i �� Formalism: 3+1 Split j K j 3 � αK � 2 Q D = Formalism: Buchert i Averaging Formalism: Modifications to Standard Cosmology � αD i D i α � Dynamical “backreaction”: P D = � ˙ αK � + Link to Perturbation ■ Theory α 2 R � � Curvature contribution: R D = ■ Link to Perturbation Theory: Backreaction ■ Deviation from average density and pressure: Terms Numerical Study 3 T ( a ) 3 S ( a ) Summary α 2 ̺ ( a ) α 2 S ( a ) D D � � � � 8 πG = − ρ ( a ) , 4 πG = − S ( a ) 8 / 23

  12. Formalism: Modifications to Standard Cosmology ■ Motivation The Buchert equations can then be written as Backreaction � ˙ � 2 Formalism: 3+1 Split a D 8 πG ρ ( a ) + Λ 3 + 8 πG � Formalism: Buchert = ρ eff , Averaging a D 3 3 Formalism: a Modifications to a D ¨ − 4 πG + Λ 3 − 4 πG Standard Cosmology � � � � � = ρ ( a ) + S ( a ) ρ eff + S eff Link to Perturbation a D 3 3 Theory Link to Perturbation a Theory: Backreaction Terms with effective correction fluid Numerical Study � Λ 8 πG 3 − 1 Summary α 2 − 1 T ( a ) � � ρ eff = + 6 ( Q D + R D ) , D 3 a + 1 α 2 − 1 S ( a ) � � � 16 πGp eff = 4 D − 2Λ 3 ( R D − 3 Q D − 4 P D ) , a α 2 − 1 a S ( a ) � � R D − 3 Q D − 4 P D + 12 � D − 6Λ − 1 w eff = . a T ( a ) 3 − 2Λ � α 2 − 1 � R D + Q D − 6 � D 9 / 23

  13. Link to Perturbation Theory ■ Motivation Identify ADM and Newtonian co-ordinates (c.f. Mukhanov et. al.) Backreaction ds 2 = − (1+2Ψ) dt 2 + a 2 ( t )(1 − 2Φ) δ ij dx i dx j = − α 2 dt 2 + h ij dx i dx j Formalism: 3+1 Split Formalism: Buchert Averaging Formalism: Modifications to Standard Cosmology a D ( t ) is “observational”, a ( t ) is “physical” – drawback of re-averaging ■ Link to Perturbation Theory assumed average (Kolb, Marra, Matarrese 08; IB, Behrend, Robbers Link to Perturbation Theory: Backreaction 08) Terms Numerical Study Summary 10 / 23

  14. Link to Perturbation Theory ■ Motivation Identify ADM and Newtonian co-ordinates (c.f. Mukhanov et. al.) Backreaction ds 2 = − (1+2Ψ) dt 2 + a 2 ( t )(1 − 2Φ) δ ij dx i dx j = − α 2 dt 2 + h ij dx i dx j Formalism: 3+1 Split Formalism: Buchert Averaging Formalism: Modifications to Standard Cosmology a D ( t ) is “observational”, a ( t ) is “physical” – drawback of re-averaging ■ Link to Perturbation Theory assumed average (Kolb, Marra, Matarrese 08; IB, Behrend, Robbers Link to Perturbation Theory: Backreaction 08) Terms ■ Quickly find Numerical Study a D ˙ = ˙ a � � Summary ˙ a − Φ (1 + 2Φ) a D 10 / 23

  15. Link to Perturbation Theory: Backreaction Terms ■ Motivation Kinematical and dynamical backreactions: Backreaction �� � 2 � Formalism: 3+1 Split Φ 2 � � ˙ ˙ Formalism: Buchert Q D = 6 − Φ , Averaging Formalism: Modifications to 1 ∇ 2 Ψ − ( ∇ Ψ) 2 + 2Φ ∇ 2 Ψ − ( ∇ Φ) · ( ∇ Ψ) � � Standard Cosmology P D = a 2 Link to Perturbation Theory +3 ˙ a Link to Perturbation � � � � Ψ − 2Ψ ˙ ˙ Ψ ˙ ˙ Ψ − 3 Φ Theory: Backreaction a Terms Numerical Study Summary ■ Curvature correction: R D = 2 2 ∇ 2 Φ + 3( ∇ Φ) 2 + 4(2Φ + Ψ) ∇ 2 Φ � � . a 2 11 / 23

  16. Link to Perturbation Theory: Backreaction Terms ■ Motivation Fluid corrections: Backreaction 8 πG Formalism: 3+1 Split δ + 2Ψ + (1 + w ) a 2 v 2 + 2Ψ δ � � T D = ρ , Formalism: Buchert 3 Averaging Formalism: 4 πG s δ + 6 w Ψ + (1 + w ) a 2 v 2 + 6 c 2 Modifications to 3 c 2 � � S D = ρ s Ψ δ Standard Cosmology 3 Link to Perturbation Theory Link to Perturbation Theory: Backreaction Terms Numerical Study Summary 12 / 23

  17. Link to Perturbation Theory: Backreaction Terms ■ Motivation Fluid corrections: Backreaction 8 πG Formalism: 3+1 Split δ + 2Ψ + (1 + w ) a 2 v 2 + 2Ψ δ � � T D = ρ , Formalism: Buchert 3 Averaging Formalism: 4 πG s δ + 6 w Ψ + (1 + w ) a 2 v 2 + 6 c 2 Modifications to 3 c 2 � � S D = ρ s Ψ δ Standard Cosmology 3 Link to Perturbation Theory Link to Perturbation Theory: Backreaction Note: alternative gauges – uniform density to simplify T D and S D , ■ Terms uniform curvature to remove R D , synchronous gauge to remove P D . Numerical Study Summary Q D cannot be entirely removed except in EdS matter domination. 12 / 23

  18. Motivation Backreaction Numerical Study Ergodic Averaging Quintessence Cosmology Early Dark Energy Inverse Power Law Numerical Study Potential Exponential Potential Equations of State Summary 13 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend