s 2 2573 and the prediction of novel exotic charmed mesons
play

s 2 ( 2573 ) and the prediction of novel exotic charmed mesons R. - PowerPoint PPT Presentation

Introduction Formalism: The VV interaction Results Conclusions A new interpretation for the D s 2 ( 2573 ) and the prediction of novel exotic charmed mesons R. Molina 1 , T. Branz 2 , and E. Oset 1 1 Departamento de Fsica Terica and


  1. Introduction Formalism: The VV interaction Results Conclusions A new interpretation for the D ∗ s 2 ( 2573 ) and the prediction of novel exotic charmed mesons R. Molina 1 , T. Branz 2 , and E. Oset 1 1 Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia, Spain 2 Institut für Theoretische Physik, Universität Tübingen, Kepler Center for Astro and Particle Physics, Auf der Morgenstelle 14, D-72076 Tübingen, Germany

  2. Introduction Formalism: The VV interaction Results Conclusions Outline Introduction Formalism: The VV interaction Convolution The PP decay mode Results Conclusions

  3. Introduction Formalism: The VV interaction Results Conclusions Introduction • Heavy quark symmetry framework (HQS): with l = 1 two doublets of D s states are generated: - light quark → j l = 3 / 2, total angular momentum: J P = 1 + , 2 + - light quark → j l = 1 / 2, total angular momentum: J P = 0 + , 1 + • The doublet with J P = 1 + , 2 + is identified with the D s 1 ( 2536 ) and D s 2 ( 2573 ) in HQS • However, the doublet with J P = 0 + , 1 + and very broad states cannot be identified with the narrow states discovered: the D ∗ s 0 ( 2317 ) and the D s 1 ( 2460 ) (100 MeV lower in mass than the predictions) • D ∗ s 0 ( 2317 ) : strong s-wave Coupling to DK , E. van Beveren and G. Rupp, PRL (2003) ; Couple Channels: D ∗ s 0 ( 2317 ) ∼ DK , D. Gamermann, E. Oset, D. Strottmann, M. J. Vicente Vacas , PRD (2007) ; D s 1 ( 2460 ) ∼ KD ∗ ( η D ∗ s ) , D s 1 ( 2536 ) ∼ DK ∗ ( D s ω )) D. Gamermann and E. Oset, EPJA (2007)

  4. Introduction Formalism: The VV interaction Results Conclusions The VV interaction Bando, Kugo, Yamawaki L ( 3 V ) 4 � V µν V µν � = ig � ( ∂ µ V ν − ∂ ν V µ ) V µ V ν � L III = − 1 III L ( c ) III = g 2 2 � V µ V ν V µ V ν − V ν V µ V µ V ν � V µν , g V µ ρ 0 K ∗ +  ω  ρ + 2 + √ √ V µν = ∂ µ V ν − ∂ ν V µ − ig [ V µ , V ν ] 2 − ρ 0 K ∗ 0 ρ − ω  2 +  √ √ g = M V   2 K ∗− K ∗ 0 ¯ 2 f φ µ

  5. Introduction Formalism: The VV interaction Results Conclusions The VV interaction V V V V + − → V V V a ) b ) c ) d ) • The VV interaction comes from 1. a) and c) • 1. d): - p-wave repulsive for equal masses (R. Molina, 2008) - minor component of s-wave for different masses (L. S. Geng, 2009)

  6. Introduction Formalism: The VV interaction Results Conclusions Formalism: The VV interaction Approximation ǫ µ k µ = ( k 0 , 0 , 0 , | � k | ) 1 = ( 0 , 1 , 0 , 0 ) ǫ µ 1 = ( 0 , 1 , 0 , 0 ) ǫ µ 2 = ( 0 , 0 , 1 , 0 ) ǫ µ k / m ≃ 0, � 2 = ( 0 , 0 , 1 , 0 ) 3 = ( | � k | , 0 , 0 , k 0 ) / m ǫ µ ǫ µ j ǫ ( l ) k µ 3 = ( 0 , 0 , 0 , 1 ) µ ≃ 0 Spin projectors 1 P ( 0 ) 3 ǫ µ ǫ µ ǫ ν ǫ ν = 1 2 ( ǫ µ ǫ ν ǫ µ ǫ ν − ǫ µ ǫ ν ǫ ν ǫ µ ) P ( 1 ) = { 1 2 ( ǫ µ ǫ ν ǫ µ ǫ ν + ǫ µ ǫ ν ǫ ν ǫ µ ) − 1 P ( 2 ) 3 ǫ α ǫ α ǫ β ǫ β } =

  7. Introduction Formalism: The VV interaction Results Conclusions Formalism: The VV interaction (a) + (b) • (a) and (b) → Pole + mass and width (c) • (c) → p-wave + repulsive (not included) (d) • (d) → Pole width Bethe equation � q max q 2 dq T = [ I − VG ] − 1 V G = ω 1 + ω 2 0 ( 2 π ) 2 ω 1 ω 2 [( P 0 ) 2 − ( ω 1 + ω 2 ) 2 + i ǫ ]

  8. Introduction Formalism: The VV interaction Results Conclusions The VV interaction 1. f 0 ( 1370 ) , f 2 ( 1270 ) ∼ ρρ R. Molina, D. Nicmorus and E. Oset, Phys. Rev. D 78 , 114018 (2008) 2 ( 1525 ) ∼ ρρ , K ∗ ¯ 2. f 0 ( 1370 ) , f 0 ( 1710 ) , f 2 ( 1270 ) , f ′ K ∗ ... K ∗ 2 ( 1430 ) ∼ ρ K ∗ , ω K ∗ ... L. S. Geng and E. Oset, Phys. Rev. D 79 , 074009 (2009) 3. D ∗ ( 2640 ) , D ∗ 2 ( 2460 ) ∼ ρ ( ω ) D ∗ R. Molina, H. Nagahiro, A. Hosaka and E. Oset, Phys. Rev. D 80 , 014025 (2009) 4. Y(3940), Z(3930), X(4160) ∼ D ∗ ¯ D ∗ , D ∗ D ∗ s ¯ s R. Molina and E. Oset, Phys. Rev. D 80 , 114013 (2009)

  9. Introduction Formalism: The VV interaction Results Conclusions The VV interaction • C = 0 ; S = 1 ; I = 1 / 2 • C = 1 ; S = 2 ; I = 1 / 2: (hidden charm): D ∗ s K ∗ D ∗ D ∗ , J /ψ K ∗ s ¯ • C = 2 ; S = 0 ; I = 0, 1: • C = 1 ; S = − 1 ; I = 0, 1: D ∗ D ∗ D ∗ ¯ K ∗ • C = 2 ; S = 1 ; I = 1 / 2: • C = 1 ; S = 1 ; I = 0: D ∗ s D ∗ D ∗ K ∗ , D ∗ s ω , D ∗ s φ • C = 2 ; S = 2 ; I = 0: • C = 1 ; S = 1 ; I = 1: D ∗ s D ∗ s D ∗ K ∗ , D ∗ s ρ

  10. Introduction Formalism: The VV interaction Results Conclusions Convolution Convolution due to the width of the ρ meson ( D ∗ s ρ channel) � ( m ρ + 2 Γ ρ ) 2 1 1 ( − 1 1 G ( s ) ˜ ( m ρ − 2 Γ ρ ) 2 d ˜ m 2 π ) I m G ( s , ˜ m 2 1 , m 2 = s ) D ∗ N m 2 1 − m 2 ρ + i Γ ˜ m 1 ˜ m 2 − 4 m 2 m ) = Γ ρ ( ˜ Γ D ∗ < 2 . 1 MeV m − 2 m π ) π ) 3 / 2 θ ( ˜ Γ( ˜ m 2 ρ − 4 m 2 Γ ρ = 146 . 2 MeV π Γ K ∗ = 48 MeV • The ρ ∗ -mass convolution gives Γ ≃ 8 MeV ( D ∗ s ππ ) • The K ∗ -mass convolution gives Γ ≃ 3 MeV (or less)( D ∗ π K )

  11. Introduction Formalism: The VV interaction Results Conclusions The PP decay mode • The PP box diagram has only J P = 0 + and J P = 2 + quantum numbers • We only find atractive interaction in the sectors: - C = 1 ; S = − 1 ; I = 0: D ∗ ¯ K ∗ - C = 2 ; S = 0 ; I = 0 ; J = 1: D ∗ D ∗ - C = 1 ; S = 1 ; I = 0: D ∗ K ∗ , D ∗ s φ , - C = 2 ; S = 1 ; I = 1 / 2 ; J = 1: D ∗ s ω D ∗ s D ∗ - C = 1 ; S = 1 ; I = 1: D ∗ K ∗ , D ∗ s ρ D ∗ ( k 1 ) D ∗ ( k 3 ) D ∗ D ∗ D ∗ D ∗ s s s D ( q ) D D π ( k 1 − q ) π ( k 3 − q ) π K K K K ( P − q ) K K K ∗ ( k 2 ) K ∗ ( k 4 ) K ∗ φ φ φ D ∗ D ∗ D π π ¯ K ¯ ¯ K ∗ K ∗

  12. Introduction Formalism: The VV interaction Results Conclusions The VV interaction • Model A: b − m 2 Λ 2 F 1 ( q 2 ) = 1 q | 2 , b − ( k 0 1 − q 0 ) 2 + | � Λ 2 b − m 2 Λ 2 F 3 ( q 2 ) = 3 q | 2 , b − ( k 0 3 − q 0 ) 2 + | � Λ 2 with q 0 = s + m 2 2 − m 2 q running variable, Λ b = 1 . 4 , 1 . 5 GeV and , � 2 √ s 4 g = M ρ / 2 f π • Model B: q | 2 ) / Λ 2 , F ( q 2 ) = e (( q 0 ) 2 −| � with Λ = 1 , 1 . 2 GeV, q 0 = s + m 2 2 − m 2 , g = M ρ / 2 f π , 2 √ s 4 s / 2 f D s = 5 . 47 and g D = g exp g D s = M D ∗ D ∗ D π = 8 . 95 (experimental value)

  13. Introduction Formalism: The VV interaction Results Conclusions C = 1 ; S = − 1 ; I = 0 (exotic) • Channels: D ∗ ¯ K ∗ ( α = − 1 . 6) • V ∼ − 10 g 2 for I = 0 ; J = 0 , 1 √ s pole (MeV) I [ J P ] Γ (MeV) Model • V ∼ − 16 g 2 for 0 [ 0 + ] 2848 A, Λ = 1400 MeV 23 I = 0 ; J = 2 A, Λ = 1500 MeV 30 B, Λ = 1000 MeV 25 B, Λ = 1200 MeV 59 √ s pole I [ J P ] g D ∗ ¯ 0 [ 1 + ] K ∗ ) 2839 Convolution 3 0 [ 0 + ] 0 [ 2 + ] 2848 12227 2733 A, Λ = 1400 MeV 11 0 [ 1 + ] 2839 13184 A, Λ = 1500 MeV 14 0 [ 2 + ] 2733 17379 B, Λ = 1000 MeV 22 B, Λ = 1200 MeV 36

  14. Introduction Formalism: The VV interaction Results Conclusions C = 1 ; S = 1 ; I = 0 • V ∼ − 18 g 2 for √ s (MeV) I [ J P ] Model Γ (MeV) I = 0 ; J = 0 , 1 0 [ 0 + ] 2683 A, Λ = 1400 MeV 20 • V ∼ − 26 g 2 for A, Λ = 1500 MeV 25 I = 0 ; J = 2 B, Λ = 1000 MeV 44 B, Λ = 1200 MeV 71 0 [ 1 + ] 4 × 10 − 3 2707 Convolution • α = − 1 . 6 0 [ 2 + ] 2572 A, Λ = 1400 MeV 7 Γ exp = 20 ± 5 MeV A, Λ = 1500 MeV 8 B, Λ = 1000 MeV 18 B, Λ = 1200 MeV 23 √ s I [ J P ] g D ∗ K ∗ g D ∗ g D ∗ s ω s φ 0 [ 0 + ] 2683 15635 − 4035 6074 0 [ 1 + ] Channels: 2707 14902 − 5047 4788 C = 1 ; S = 1 ; I = 0: D ∗ K ∗ , D ∗ s φ , D ∗ 0 [ 2 + ] s ω 2572 18252 − 7597 7257

  15. Introduction Formalism: The VV interaction Results Conclusions C = 1 ; S = 1 ; I = 1 • V ∼ − 7 g 2 for • Channels: D ∗ K ∗ , D ∗ s ρ ( α = − 1 . 6) I = 0 ; J = 0 , 1 • V ∼ − 13 g 2 for √ s pole (MeV) I [ J P ] Model Γ (MeV) I = 0 ; J = 2 1 [ 2 + ] 2786 A, Λ = 1400 MeV 8 A, Λ = 1500 MeV 9 B, Λ = 1000 MeV 9 √ s pole I G [ J PC ] g D ∗ K ∗ g D ∗ s ρ B, Λ = 1200 MeV 11 1 [ 2 + ] 2786 11041 11092

  16. Introduction Formalism: The VV interaction Results Conclusions C = 2 ; S = 0 ; I = 0 and C = 2 ; S = 1 ; I = 1 / 2 (exotics) Channels: D ∗ D ∗ ( α = − 1 . 4) Channels: D ∗ D ∗ s ( α = − 1 . 4) • V ∼ 0 for I = 0 ; J = 0 , 2 • V ∼ 20 for I = 1 / 2 ; J = 0 , 2 • V ∼ − 25 g 2 for I = 0 ; J = 1 • V ∼ − 20 g 2 for I = 0 ; J = 1 √ s pole √ s pole I [ J P ] I [ J P ] g D ∗ D ∗ g D ∗ s D ∗ 0 [ 1 + ] 1 / 2 [ 1 + ] 3969 16825 4101 13429

  17. Introduction Formalism: The VV interaction Results Conclusions Summary √ s √ s exp I [ J P ] C , S Γ A (Λ = 1400 ) Γ B (Λ = 1000 ) State Γ exp 0 [ 0 + ] 1 , − 1 2848 23 25 0 [ 1 + ] 2839 3 3 0 [ 2 + ] 2733 11 22 0 [ 0 + ] 1 , 1 2683 20 44 0 [ 1 + ] 4 × 10 − 3 4 × 10 − 3 2707 0 [ 2 + ] D s 2 ( 2573 ) 2572 . 6 ± 0 . 9 2572 7 18 20 ± 5 1 [ 2 + ] 2786 8 9 0 [ 1 + ] 2 , 0 , 3969 0 0 1 / 2 [ 1 + ] 2 , 1 4101 0 0 Table: Summary of the nine states obtained. The width is given for the model A, Γ A , and B, Γ B . All the quantities here are in MeV. See the talk of A. Valcarce 16/06 (16.30h quarkonia session)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend