charmed mesons in matter chihiro sasaki institute of
play

Charmed Mesons in Matter Chihiro Sasaki Institute of Theoretical - PowerPoint PPT Presentation

Charmed Mesons in Matter Chihiro Sasaki Institute of Theoretical Physics, University of Wroclaw, Poland [1] C.S., Phys. Rev. D 90 , no. 11, 114007 (2014). [2] C.S. and K. Redlich, Phys. Rev. D 91 , no. 7, 074021 (2015). Introduction: why charm?


  1. Charmed Mesons in Matter Chihiro Sasaki Institute of Theoretical Physics, University of Wroclaw, Poland [1] C.S., Phys. Rev. D 90 , no. 11, 114007 (2014). [2] C.S. and K. Redlich, Phys. Rev. D 91 , no. 7, 074021 (2015).

  2. Introduction: why charm? • crossover temperatures: not unique! T ss T qq - - chiral 200 MeV 155 MeV T poly.inflection T charges deconf • flavor basis vs. conserved charge basis: strange mesons deconfined at T ch ! µ u = 1 3 µ B + 2 µ d = 1 3 µ B − 1 µ s = 1 3 µ B − 1 3 µ Q , 3 µ Q , 3 µ Q − µ S . • charm? · · · lessons from lattice QCD: (i) EoS not affected by dynamical c-quark around T ch [Borsanyi et al. (’11)] (ii) charm quarks start to appear around T ch [Basavov et al. (’14)] (iii) survival charmed hadrons up to T/T c = 1 . 2 [Mukherjee et al. (’15)] • correlations between light and heavy-flavor physics, beyond HRG ⇒ how are heavy-light hadrons modified toward chiral crossover? D s ∼ c ¯ s is like K ∼ q ¯ s ? · · · NO!

  3. Symmetries of QCD in the heavy quark mass limit • flavor symmetries chiral symmetry : m u,d / Λ QCD ≪ 1 , m s / Λ QCD < 1 . heavy quark symmetry : Λ QCD /m c,b ≪ 1 . • SU (2 N Qf ) spin-flavor symmetry ( m Q → ∞ ): [Shuryak (’81), Isgur-Wise (’89)] light d.o.f. (q) do not feel the flavor and spin of the heavy quark (Q). flavor c B b D spin partners: spin spin D (0 − ) and D (1 − ) B (0 − ) and B (1 − ) b B * c D * flavor • real world : m D ∗ − m D = 142 MeV , m B ∗ − m B = 46 MeV ≪ Λ QCD : 1 /m Q corr. m Ds − m Dd = 100 MeV , m Bs − m Bd = 90 MeV ≪ Λ QCD : m q corr.

  4. Role of light flavor (chiral) symmetry • observation : 2nd lowest spin doublets D u,d (0 + ) : 2308 MeV D u,d (1 + ) : 2427 MeV [Belle (03)] [Belle (03)] D s (0 + ) : 2317 MeV D s (1 + ) : 2460 MeV [Babar (03)] [CLEO (03)] • mass difference of parity doublets: δm = 300 − 400 MeV ∼ Λ QCD • chiral doubling [Nowak-Rho-Zahed (92); Bardeen-Hill (93)] heavy quark sym D(1 + ) D(0 + ) chiral sym chiral sym D(0 - ) D(1 - ) heavy quark sym effective theory for heavy-light system based on the two relevant symmetries

  5. Embedding D, D s in a linear sigma model • chiral fields Σ = σ + iπ , heavy-light meson fields H (0 − , 1 − ) , G (0 + , 1 + ) Σ → g L Σ g † H L,R → S H L,R g † R , L,R . • Lagrangian V HL = V HL ( H 2 , H 4 ; Σ) + V (exp) L = L L (Σ) + L HL ( H , Σ) , . HL • 6 parameters fixed with T = 0 physics V (2) V (4) HL : m 0 , g q π , g s , HL : k 0 , k q , k s π � �� � � �� � Σ ↔H 2 Σ ↔H 4 • isospin sym & mean field approximation: � σ q � , � σ s � , � D q � , � D s � conventional approach ... then?

  6. Chiral condensates: role of charmed-meson MF 0.025 0.025 HISQ/tree : N τ =12 HISQ/tree: N τ =12 0.02 0.02 N τ =8 N τ =8 N τ =6 N τ =6 0.015 0.015 N τ =8, m l =0.037m s R R ∆ l ∆ s stout, cont. 0.01 0.01 0.005 0.005 0 0 -0.005 T [MeV] -0.005 T [MeV] 120 140 160 180 200 220 240 120 140 160 180 200 220 240 [HotQCD Collaboration (’12)] • lattice: qualitative diff. between � ¯ qq � 0.1 q=u,d ss � · · · SU(2+1): T ( u,d ) < T ( s ) and � ¯ s c c 0.08 • chiral model: σ q,s − approx. SU(3)!? σ q,s [GeV] 0.06 • induced chiral sym. breaking: 0.04 � 1 � 0.02 h ∗ 2 g q q = h q − D 2 π + 2 k q D 2 , q q 0 � 1 � s = h s − 1 0 0.5 1 1.5 2 h ∗ 2 g s 2 D 2 π + 2 k s D 2 √ . s s T/T pc

  7. conventional approach: 1. set up at T = 0 , all the parameters are constant . 2. 4 gap equations at given T 3. approximate SU(3) h ∗ q /h ∗ s ∼ 1 ...!? resolution: 1. � σ q � and � σ s � as input e.g. lattice chiral consansates 2. � D q � , � D s � and 2 HL-couplings as output ⇒ g π , k varying with T 3. h ∗ q /h ∗ s ≪ 1 restored

  8. Intrinsic thermal effects 0.1 1.2 q=u,d s 0.08 1 s (T=0) σ q,s [GeV] 0.06 0.8 s (T)/g π 0.04 0.6 g π 0.02 0.4 0 0.2 0.6 0.8 1 1.2 1.4 0.6 0.8 1 1.2 1.4 T/T pc T/T pc • concept of EFT: generating functional, Green’s functions � � Q D q D ge S QCD [ q,g ] ≡ Q D Ue S eff [ U ] Z = q q q Q • low-energy constants: high-frequency modes integrated out ⇒ in a hot/dense medium: effective couplings dep. on T/n • σ q,s profiles from lattice QCD ⇒ g π ( T ) and k ( T )

  9. In-medium charmed-meson masses 2.4 2.4 0 + 0 + 0 - 0 - 2.3 2.3 2.2 2.2 M D s [GeV] M D [GeV] 2.1 2.1 2 2 1.9 1.9 1.8 1.8 0.6 0.8 1 1.2 1.4 0.6 0.8 1 1.2 1.4 T/T pc T/T pc • chiral splitting at T pc : δM D ≃ δM D s · · · insensitive to light flavors! ⇒ heavy quark symmetry ( 0 ) � D s • light mesons at T pc : δM π - σ ≪ δM K - κ ( 0 ) � D · · · SU(2+1) � = SU(3) ( 0 � ) D • cf. chiral SU(4): ( 0 � ) [Roder-Ruppert-Rischke (’03)] D s δM D ≪ δM D s

  10. Generalized susceptibilities • generating functional vs. effective action � d 4 xJ ( x ) φ cl ( x ) Γ[ φ cl ] = − W [ J ] − • fluctuation of φ � � − 1 δ 2 W [ J ] δ 2 Γ[ φ ] � φ ( x ) φ ( y ) � − � φ ( x ) �� φ ( y ) � = δJ ( x ) δJ ( y ) = δφ cl ( x ) δφ cl ( y ) ∵ 1 = δ 2 W δ 2 Γ δJδJ δφ cl δφ cl • multiple fields � φ = ( φ 1 , φ 2 , · · · , φ n ) δ ij = δ 2 W δ 2 Γ , { i, j, k } = 1 , 2 , · · · , n δJ i δJ k δφ k δφ j – 2 × 2 sus. matrix ⇒ χ qq,qs,ss ∼ χ ch : light flavor correlations – 4 × 4 sus. matrix ⇒ χ σD , χ DD : heavy-light flavor correlations

  11. Correlations between light and heavy-light mesons [CS-Redlich (’14)] σ q,s vs. D q,s D q,s vs. D q,s 3.5 2 σ q D q D q D q 1.8 3 σ s D q D q D s σ q D s D s D s 1.6 2.5 σ s D s 1.4 χ (T)/ χ (T=0) 2 χ (T)/ χ (T=0) 1.2 1.5 1 1 0.8 0.5 0.6 0 0.4 -0.5 0.2 0.6 0.8 1 1.2 1.4 0.6 0.8 1 1.2 1.4 T/T pc T/T pc qualitative changes set in at T ∼ T pc : (NOTE: χ ch ∼ ∂σ q,s /∂m q,s ) χ ch ˆ χ D ˆ χ σD = − ˆ ˆ C HL ˆ χ D , χ Dσ = − ˆ ˆ C HL ˆ χ ch , χ DD = ˆ C D − ˆ χ ch ˆ ˆ C HL ˆ C HL ≡ ˆ χ D . in-medium D s as a probe of O(4)!

  12. Lattice observables - consistent with the model 1.0 HTLpt χ uc mn / χ c - 0.5 EQCD c 1 /p C c 2 /p C 2 sc M [GeV] m n: 22 1 + c 3 /p C c 4 /p C 3.5 13 0.5 0.4 0 + 31 11 1 − 0.3 3 0 − 0.0 0.2 2.5 0.1 -0.5 0.0 2 T [MeV] T [MeV] T [MeV] -0.1 -1.0 100 150 200 250 300 350 400 450 500 160 180 200 220 240 260 280 300 320 340 150 170 190 210 230 250 270 290 310 330 • screening D s masses [Bazavov et al. (’14)] - the same tend • 4th-order c - s corr.: survival D s up to T = 1 . 2 T ch [Mukherjee et al. (’15)] D s changes its property - medium modification sets in at ∼ T ch . • fluctuations and correlations of conserved charges X χ (non − reg) = F X ( σ q,s , D q,s ; χ ch ) X Chiral vs. confinement at finite density • hybrid model suggests a splitting of the 2 phase tr. [Benic-Mishustin-CS (’15)] • Dirac-eigenmode expansion on lattice (talk by T. Doi)

  13. Summary • Synthesis of light and heavy quark dynamics m q m c , m s m c , T m c ≪ 1 heavy quark symmetry as a reliable guide – at T pc : chiral mass splittings of HL mesons insensitive to light flavors. δM D,B ≃ δM D s ,B s vs. δM π - σ ≪ δM K - κ – remnant of O(4) in HL mixed fluctuations. – anomalous suppression of D s decay widths as a sign of CSR in-medium D s as a probe of O(4)! • Application to a dense system – strange and charm number conservation – intrinsic density dependence - role of higher-lying hadrons – chiral restoration vs. deconfinement

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend