sequences and their applica tion to cryptography ivan
play

SEQUENCES AND THEIR APPLICA TION TO CRYPTOGRAPHY Ivan Landjev - PowerPoint PPT Presentation

SEQUENCES AND THEIR APPLICA TION TO CRYPTOGRAPHY Ivan Landjev New Bulga rian Universit y Summer Sho ol Design and Seurit y of Cryptographi, F untions, Algo rithms and Devies, Alb ena, 30.06.05.07.2013


  1. SEQUENCES AND THEIR APPLICA TION TO CRYPTOGRAPHY Ivan Landjev New Bulga rian Universit y � Summer S ho ol Design and Se urit y of Cryptographi , F un tions, Algo rithms and Devi es, Alb ena, 30.06.�05.07.2013 �

  2. 0. Prelimina ries S. W. Golomb , Shift register sequen es, 1982 R. Lidl, H. Nederreiter , Finite �elds, En y lopaedia of Math. V ol. 20, Camb ridge Univ. Press, 1983. D. Jungni kel , Finite �elds - stru ture and a rithmeti s, BI Wissens haftsver- lag, 1993. G. Everest,A. v an der Poor ten, I. Shp arlinski, Th. W ard , Re ur- ren e sequen es, Math. Surveys and Monographs V ol. 104, AMS, 2003. A. V. Mikhalev, A. A. Ne haev , Linea r re urren e sequen es over mo dules, A ta Appli andae Mathemati ae 42(1996), 161-202. � Summer S ho ol Design and Se urit y of Cryptographi , F un tions, Algo rithms and Devi es, Alb ena, 30.06.�05.07.2013 � 1

  3. k i k i c i c i . . . + + m i m i � Summer S ho ol Design and Se urit y of Cryptographi , F un tions, Algo rithms and Devi es, Alb ena, 30.06.�05.07.2013 � 2

  4. . . . + + + . . . c n − 1 c n c 1 . . . a 0 a 1 a n − 1 � Summer S ho ol Design and Se urit y of Cryptographi , F un tions, Algo rithms and Devi es, Alb ena, 30.06.�05.07.2013 � 3

  5. 1. Basi Results Let F b e an a rbitra ry �eld (�nite o r in�nite). Consider an LFSR with feedba k o e� ients ( c 1 , c 2 , . . . , c n ) and initial ondi- tions a 0 , a 1 , . . . , a n − 1 where • • After t lo k y les the LFSR holds the ve to r ( a t , a t +1 , . . . , a t + n − 1 ) where a n = c 1 a n − 1 + c 2 a n − 2 + . . . + c n a 0 . � Summer S ho ol Design and Se urit y of Cryptographi , F un tions, Algo rithms and Devi es, Alb ena, 30.06.�05.07.2013 � 4 • a n + t − 1 = c 1 a n + t − 2 + c 2 a n + t − 3 + . . . + c n a t − 1 .

  6. The shift register sequen e ( a k ) k ≥ 0 satis�es the linea r re urren e relation fo r k ≥ n , o r, with the onvention c 0 := − 1 : • a k = � n i =1 c i a k − i n F eedba k p olynomial, o r re ip ro al ha ra teristi p olynomial � c 0 a k − i = 0 , k ≥ n. i =0 • The t -th state ve to r of the LFSR: a ( t ) = ( a t , a t +1 , . . . , a n − t +1 ) . f ( x ) := − c 0 − c 1 x − . . . − c n x n . � Summer S ho ol Design and Se urit y of Cryptographi , F un tions, Algo rithms and Devi es, Alb ena, 30.06.�05.07.2013 � 5 •

  7. F eedba k matrix: • . . . . . . . . . . . . . . . . . .   0 0 0 . . . 0 c n 1 0 0 . . . 0 c n − 1     0 1 0 . . . 0 c n − 2   A = .   Then a ( t +1) = a ( t ) A . In general, a ( t ) = a (0) A t , t ≥ 1 .     0 0 0 . . . 0 c 2   is the ompanion matrix of the re ip ro al ha ra teristi p olynomial 0 0 0 . . . 1 c 1 • A alled also the ha ra teristi p olynomial of the LFSR. f ∗ = x n f (1 x ) = x n − c 1 x n − 1 − . . . − c n − 1 x − c n . � Summer S ho ol Design and Se urit y of Cryptographi , F un tions, Algo rithms and Devi es, Alb ena, 30.06.�05.07.2013 � 6

  8. W e identify an a rbitra ry sequen e ( a k ) k ≥ 0 over F with the fo rmal p o w er series • Theo rem. Let a = ( a k ) b e a sequen e over F with asso iated p o w er series ∞ a k x k ∈ F [[ x ]] . � a ( x ) = a ( x ) ∈ F [[ x ]] . Then a is a shift register sequen e resulting from a LFSR of length with the feedba k p olynomial f ∈ F [ x ] if and only if one has i =0 n fo r a suitable p olynomial g ∈ F [ x ] with deg g < n . Mo reover, the o rresp onden e b et w een the shift register sequen es a ( x ) = g ( x ) b elonging to f and the p olynomials g is a f ( x ) , bije tion. � Summer S ho ol Design and Se urit y of Cryptographi , F un tions, Algo rithms and Devi es, Alb ena, 30.06.�05.07.2013 � 7

  9. Co rolla ry . Let a = ( a k ) b e a sequen e over F with asso iated p o w er series a ( x ) ∈ F [[ x ]] . Then a is a shift register sequen e if and only if a ( x ) b elongs to the �eld F ( x ) of rational fun tions over F . Example. (the Fib ona i sequen e) , ( a 0 , a 1 ) = (1 , 1) The Fib ona i sequen e an b e also obtained from a k = a k − 1 + a k − 3 + a k − 4 , A k = a k − 1 + a k − 2 ( a 0 , . . . a 3 ) = (1 , 1 , 2 , 3) . 1 − x − x 2 = 1 + x + 2 x 2 + 3 x 3 + 5 x 4 + 8 x 5 + 13 x 6 + . . . 1 a ( x ) = F eedba k p olynomial: 1 − x − x 3 − x 4 = ( x 2 + 1)(1 − x − x 2 ) . � Summer S ho ol Design and Se urit y of Cryptographi , F un tions, Algo rithms and Devi es, Alb ena, 30.06.�05.07.2013 � 8

  10. Theo rem. Let a = ( a k ) b e a sequen e over F with asso iated p o w er series a ( x ) ∈ F [[ x ]] . Then there exists a uniquely determined moni p olynomial f 0 su h that a an b e obtained from some LFSR with feedba k p olynomial f if and only if f is a multiple of f 0 . Co rolla ry . Let a = ( a k ) b e a sequen e over F with asso iated p o w er series a ( x ) ∈ F [[ x ]] . Then there exists a uniquely determined moni p olynomial m ( x ) su h that a an b e obtained from some LFSR with ha ra teristi p olynomial f ∗ if and only if f ∗ is a multiple of m . The p olynomial m ( x ) is alled the minimal p olynomial of a , o r m ( x ) is the ha ra teristi p olynomial of the linea r re urren e relation of the least o rder. Note: The degree of f 0 ma y b e smaller than the length of the asso iated shift register p ro du ing a , whereas the degree of the minimal p olynomial alw a ys equals • this length. � Summer S ho ol Design and Se urit y of Cryptographi , F un tions, Algo rithms and Devi es, Alb ena, 30.06.�05.07.2013 � 9

  11. F o r example, a = (0 , 1 , 1 , 1 , 1 , . . . ) , a k = a k − 1 with initial ondition (0 , 1) . The least length of a LFSR p ro du ing a is 2. The feedba k p olynomial is f 0 ( x ) = 1 − x ; The minimal p olynomial is m = x 2 − x . Theo rem. Let a = ( a k ) b e a shift register sequen e over the �eld F b elonging to the LFSR of length n with ha ra teristi p olynomial f ∗ . Then f ∗ is a tually the minimal p olynomial of a if and only if the �rst n state ve to rs a (0) , a re linea rly indep endent. a (1) , . . . , a ( n − 1) � Summer S ho ol Design and Se urit y of Cryptographi , F un tions, Algo rithms and Devi es, Alb ena, 30.06.�05.07.2013 � 10

  12. Theo rem. Consider the linea r re urren e relation of o rder n with ha ra teristi p olynomial f ∗ ( x ) = x n − c 1 x n − 1 − . . . − c n − 1 x − c n n over the �eld F . If α 1 , . . . , α t a re distin t � ro ots of f ∗ (in some extension �eld E ( ∗ ) a k = c i a k − i , k ≥ n of F ) then i =1 de�nes a solution s = ( s k ) of (*) over E . Mo reover, the solutions (**) fo rm a ve to r spa e of dimensiom t over E . Co rolla ry . If the ha ra teristi p olynomial f ∗ of the linea r re urren e relation s k = λ 1 α k 1 + . . . + λ t α k ( ∗∗ ) t (*) has distin t ro ots α 1 , . . . , α n (in its splitting �eld E ), then all solutions of (*) over E a re of the fo rm (**) with t = n . � Summer S ho ol Design and Se urit y of Cryptographi , F un tions, Algo rithms and Devi es, Alb ena, 30.06.�05.07.2013 � 11

  13. 2. Ultimately P erio di Sequen es A sequen e a = ( a k ) is alled ultimately p erio di with p erio d r if it satis�es the ondition a k + r = a k fo r all su� iently la rge k . If this a tually holds fo r all k ≥ 0 , one alls a p erio di . Theo rem. Let a = ( a k ) b e an ultimately p erio di sequen e over some set S , • with least p erio d r 0 . Then the p erio ds of a a re p re isely the multiples of r 0 . Mo reover, if a should b e p erio di with some p erio d r , it is a tually p erio di with p erio d r 0 . If r 1 is the least p erio d of an ultimately p erio di sequen e a and if N is the smallest integer fo r whi h a k + r 1 = a k fo r all k ≥ N holds, one alls N the p rep erio d of a Thus a is p erio di if and only if it has p rep erio d 0. • � Summer S ho ol Design and Se urit y of Cryptographi , F un tions, Algo rithms and Devi es, Alb ena, 30.06.�05.07.2013 � 12

  14. Theo rem. Let a = ( a k ) b e a sequen e over the �eld F with asso iated fo rmal p o w er series a ( x ) ∈ F [[ x ]] . Then a is ultimately p erio di with p erio d r if and only if (1 − x r ) a ( x ) is a p olynomial over F . Co rolla ry . Any ultimately p erio di sequen e over a �eld is a shift register sequen e. � Summer S ho ol Design and Se urit y of Cryptographi , F un tions, Algo rithms and Devi es, Alb ena, 30.06.�05.07.2013 � 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend