second order conformally invariant elliptic equations
play

Second order conformally invariant elliptic equations Yanyan Li - PowerPoint PPT Presentation

Second order conformally invariant elliptic equations Yanyan Li Rutgers University May 24, 2017. ICTP, Trieste, Italy Theorem 3-1 (Luc Nguyen, L. ) (Blow up analysis) Assume { u k } C 2 ( B 2 ), f ( ( A u k )) = 1 , u k > 0 , in B


  1. Second order conformally invariant elliptic equations Yanyan Li Rutgers University May 24, 2017. ICTP, Trieste, Italy

  2. • Theorem 3-1 (Luc Nguyen, L. ) (Blow up analysis) Assume { u k } ∈ C 2 ( B 2 ), f ( λ ( A u k )) = 1 , u k > 0 , in B 2 , sup u k → ∞ . B 1 Then ∀ ǫ > 0, after passing to a subsequence, ∃ { x 1 k , · · · , x m k } ⊂ B 2 (0), 1 ≤ m ≤ ¯ m , k | ≥ K − 1 > 0 , k − x j | x i ∀ k , i � = j , u k ( x i k ) = sup u k . B δ ( x i k ) K − 1 ≤ u k ( x i k ) ≤ K , ∀ i , j , k , u k ( x j k ) � u k ( x ) − U x i k , u k ( x i k ) ( x ) | ≤ ǫ U x i k , u k ( x i k ) ( x ) , ∀ x ∈ B δ ( x i � k ) . 1 K 2 (0) \∪ m i =1 B δ ( x i k ) ≤ u k ( x ) ≤ k ) , in B 3 k ) , ∀ k . K δ n − 2 u k ( x 1 δ n − 2 u k ( x 1 2 —– U ¯ x ,µ ( x ) = µ U ( µ n − 2 ( x − ¯ x )), 2 − n —– U ( x ) = (1 + | x | 2 ) satisfies f ( λ ( A U )) = 1, 2 —– ¯ m , K depend only on ( f , Γ), δ depends on ( f , Γ) and ǫ .

  3. Proposition 3-1. (Strengthened Liouville type theorem) Assume 0 < v ∈ C 0 ( R n ), 0 < v k ∈ C 2 ( B R k ), R k → ∞ , v k → v in C 0 f ( λ ( A v k )) = 1 in B R k , loc ( R n ) . a � n − 2 2 , x ∈ R n . � v ( x ) = a > 0 , ¯ Then 1 + a 2 | x − ¯ x | 2 • v satisfies f ( λ ( A v )) = 1, in R n in viscosity sense. Open Problem. Let 0 < v ∈ C 0 loc ( R n ) satisfy f ( λ ( A v )) = 1 , in R n in viscosity sense . Is it true that a � n − 2 2 , x ∈ R n ? � v ( x ) = a > 0 , ¯ 1 + a 2 | x − ¯ x | 2

  4. Proof of Proposition 3-1. 0 < v superharmonic, so | y | n − 2 v ( y ) ≥ 2 c 0 > 0 , ∀ | y | ≥ 1 . Passing to subsequence, shrinking R k , shrinking c 0 , may assume | v k ( y ) − v ( y ) | ≤ ( R k ) − n , v k ( y ) ≥ c 0 ( R k ) 2 − n , ∀ | y | ≤ R k .

  5. • Define for x ∈ R n , | x | + 1 ≤ R k / 4, λ k ( x ) = sup { 0 < µ ≤ R k ¯ 4 | ( v k ) x ,λ ≤ v k in B R k (0) \ B λ ( x ) , ∀ 0 < λ < µ } , | y − x | ) n − 2 v k ( x + λ 2 ( y − x ) λ where ( v k ) x ,λ ( y ) := ( | y − x | 2 ), the Kelvin transformation. • ¯ λ k ( x ) well defined and ∃ C ( x ) > 0 such that 1 λ k ( x ) ≤ R k C ( x ) ≤ ¯ 0 < 4 , ∀ k . —– Proof based on : • Local gradient estimates: u ∈ C 2 ( B 2 ) , f ( λ ( A u )) = 1 , 0 < u ≤ b , in B 2 implies |∇ log u | ≤ C in B 1 —– C depends only on ( f , Γ) and b .

  6. • Set ¯ ¯ λ ( x ) =lim inf λ k ( x ) ∈ (0 , ∞ ]. k →∞ • Can prove (maximum principle, Hopf Lemma): either ¯ λ ( x ) ≡ ∞ ∀ x or ¯ λ ( x ) < ∞ ∀ x . ¯ λ ( x ) ≡ ∞ leads to: v ≡ Constant, which can be ruled out. ¯ λ ( x ) < ∞ ∀ x leads to: | y |→∞ | y | n − 2 v x , ¯ | y |→∞ | y | n − 2 v ( y ) < ∞ , ∀ x . lim λ ( x ) ( y ) = α := lim inf

  7. • We have arrived at : 0 < v ∈ C 0 , 1 loc ( R n ), ∆ v ≤ 0 in R n , for every x ∈ R n , there exists 0 < ¯ λ ( x ) < ∞ such that λ ( x ) ( y ) ≤ v ( y ) , ∀ | y − x | ≥ ¯ λ ( x ) , v x , ¯ | y |→∞ | y | n − 2 v x , ¯ | y |→∞ | y | n − 2 v ( y ) , lim λ ( x ) ( y ) = α := lim inf ∀ x . • Claim. We can deduce from the above that a � n − 2 2 , � x ∈ R n . v ( x ) = b a , b > 0 , ¯ 1 + a 2 | x − ¯ x | 2 Since v k → v in C 0 loc ( R n ) and f ( λ ( A v k )) = 1, can prove that b = 1.

  8. • A Lemma. For n ≥ 2, B 1 ⊂ R n , w 1 , w 2 ∈ C 0 ( B 1 ), w 1 , w 2 differentiable at 0, u ∈ L 1 loc ( B 1 \ { 0 } ), ∆ u ≤ 0 in B 1 \ { 0 } , u ( y ) ≥ max { w 1 ( y ) , w 2 ( y ) } , y ∈ B 1 \ { 0 } , w 1 (0) = w 2 (0) = lim inf y → 0 u ( y ) . Then ∇ w 1 (0) = ∇ w 2 (0) . • Apply the lemma with w 1 = w ( x ) , w 2 = w (˜ x ) , u = v ψ , x , ˜ x ∈ D .

  9. y • Proof of Claim. Let ψ ( y ) = | y | 2 , and w ( x ) := ( v x , ¯ λ ( x ) ) ψ , x ∈ R n . • Then, for some δ ( x ) > 0, v ψ ≥ w ( x ) in B δ ( x ) \ { 0 } , w ( x ) (0) = α = lim inf y → 0 v ψ ( y ) , ∆ v ψ ≤ 0 , in B δ ( x ) \ { 0 } , • Let D = { x ∈ R n | v is differentiable at x } . Since v ∈ C 0 , 1 loc ( R n ), Lebesgue measure | R n \ D | = 0. • By the Lemma , ∇ w ( x ) (0) = ∇ w (˜ x ) (0) , ∀ x , ˜ x ∈ D . Namely, for some V ∈ R n , ∇ w ( x ) (0) = V , ∀ x ∈ D .

  10. • A calculation yields n n ∇ w ( x ) (0) = ( n − 2) α x + α n − 2 v ( x ) n − 2 ∇ v ( x ) . • Thus � n − 2 n − 2 − n − 2 2 α | x | 2 + V · x n n − 2 v ( x ) − � ∇ x α = 0 , ∀ x ∈ D . 2 2 x ∈ R n and d ∈ R , • Consequently, for some ¯ 2 2 x | 2 + d α − 2 v ( x ) − n − 2 ≡ α − n − 2 | x − ¯ n − 2 . • Since v > 0, we must have d > 0, so 2 α n − 2 � n − 2 2 . � v ( x ) ≡ x | 2 d + | x − ¯ Claim proved.

  11. Proposition 3-2. Assume { v k } ∈ C 2 ( B R k ), R k → ∞ , f ( λ ( A v k ))( y ) = 1 , 0 < v k ( y ) ≤ v k (0) = 1 , | y | ≤ R k . (1) 0 ( ǫ ) and δ ′ = δ ′ ( ǫ ) such that ∀ k > k ′ Then ∀ ǫ > 0, ∃ k ′ 0 = k ′ 0 , ∀ | y | ≤ δ ′ R k . | v k ( y ) − U ( y ) | ≤ 2 ǫ U ( y ) , (2) Recall: � n − 2 � 2 1 —– U ( x ) := 1+ | x | 2 —– A U ≡ 2 I , f ( λ ( A U )) ≡ 1

  12. By the local gradient estimates and by Proposition 3-1, after passing to subsequence, in C 0 loc ( R n ) . v k → U , Lemma 1. ∀ ǫ > 0, ∃ k 0 , such that ∀ k ≥ k 0 , | y | = r v k ( y ) ≤ (1 + ǫ ) U ( y ) , min ∀ 0 < r < R k . Proof. • Facts: U 0 ,λ ( y ) < U ( y ) , ∀ 0 < λ < 1 , | y | > λ, U 0 , 1 ≡ U . U 0 ,λ ( y ) > U ( y ) , ∀ λ > 1 , | y | > λ.

  13. • Contradiction argument: If for some ǫ > 0, ∃ r k min v k ( y ) > (1 + ǫ ) U ( y ) . | y | = r k • Then, using the above facts of U , r k → ∞ , and ( v k ) λ ( y ) ≤ v k ( y ) , ∀ 0 < λ < 1 + ǫ 2 , | y | = r k . • Sending k → ∞ . U λ ( y ) ≤ U ( y ) , ∀ 0 < λ < 1 + ǫ 2 , λ < | y | < ∞ . Violating the above facts of U . Lemma 1 proved.

  14. Lemma 2. ∀ ǫ > 0, ∃ small δ 1 > 0, large r 1 > 0, such that for large k , v k ( y ) ≥ (1 − ǫ ) U ( y ) , ∀ | y | ≤ δ 1 R k , � n +2 n − 2 v ≤ ǫ. k r 1 ≤| y |≤ δ 1 R k Proof. Since v k → U in C 0 loc ( R n ), ∃ r 1 such that for large k v k ( y ) ≥ (1 − ǫ 2 ) U ( y ) , ∀ | y | ≤ r 1 , v k ( y ) ≥ (1 − ǫ 2 )( r 1 ) 2 − n , ∀ | y | = r 1 , Superharmonicity of v k , maximum principle, we have | y | 2 − n − ( R k ) 2 − n � v k ( y ) ≥ (1 − ǫ 2 ) � , r 1 ≤ | y | ≤ R k .

  15. 2 n − 2 ), Thus, for any δ 1 ∈ (0 , ǫ v k ( y ) ≥ (1 − 2 ǫ 2 ) | y | 2 − n , r 1 ≤ | y | ≤ δ 1 R k . The equation of v k implies that ∃ δ > 0, − ∆ v k ( y ) ≥ n − 2 n +2 δ v k ( y ) in r 1 ≤ | y | ≤ δ 1 R k . n − 2 2 This implies (1 − 2 ǫ 2 ) | y | 2 − n v k ( y ) ≥ + 1 � n − 2 dx , ∀ | y | = δ 1 R k n +2 C | y | 2 − n δ v k ( x ) . 2 2 r 1 ≤| x |≤ δ 1 R k / 8 By Lemma 1, ∀ | y | = δ 1 R k (1 + 2 ǫ 2 ) | y | 2 − n ≥ v k ( y ) , . 2 Lemma 2 follows from the above.

  16. Since v k ≤ 1, by Lemma 2, for any ǫ > 0, we have, for large k , � 2 n n − 2 ≤ ǫ. v k r 1 ≤| y |≤ δ 1 R k • Small energy implies L ∞ bound — consequence of Liouville, as showed before. Lemma 3. ∃ δ 0 > 0 and C 0 > 1 such that if 0 < u ∈ C 2 ( B 2 ), � 2 n f ( λ ( A u )) = 1 , in B 2 , n − 2 ≤ δ 0 , u B 2 then u ≤ C 0 in B 1 .

  17. Lemma 4. ∃ C , δ 4 > 0, independent of k , such that v k ( y ) ≤ CU ( y ) , ∀ | y | ≤ δ 4 R k . Proof. ∀ 4 r 1 < r < δ 1 R k / 4, consider 1 n − 2 2 v k ( rz ) , v k ( z ) = r ˜ 4 < | z | < 4 . For large k , � � 2 n 2 n n − 2 = n − 2 ≤ ǫ := δ 0 , v k ( z ) ˜ v k ( η ) 1 r 4 < | z | < 4 4 < | η | < 4 r where δ 0 > 0 is the number in Lemma 3.

  18. • By Lemma 3, 1 v k ( z ) ≤ C , ˜ 3 < | z | < 3 , for some universal constant C . • By local gradient estimates, 1 |∇ log ˜ v k ( z ) | ≤ C , 2 < | z | < 2 . • Thus max | z | =1 ˜ v k ( z ) ≤ min | z | =1 ˜ v k ( z ) . i.e. max | x | = r v k ( x ) ≤ C min | x | = r v k ( x ) ≤ CU ( r ) . —- used Lemma 1 for last inequality. Lemma 4 follows immediately.

  19. Proof of Proposition 3-2. Only need to prove that there exists δ ′ and k ′ 0 such that for any k ≥ k ′ 0 , ∀ | y | ≤ δ ′ R k . v k ( y ) ≤ (1 + 2 ǫ ) U ( y ) , Suppose the contrary, passing to subsequence, ∃ | y k | = δ k R k , δ k → 0 + , but v k ( y k ) = max v k ( y ) ≥ (1 + 2 ǫ ) U ( y k ) . | y | = δ k R k Since v k → v in C 0 loc ( R n ), | y k | → ∞ . Consider rescaling of v k : | z | < δ 4 R k v k ( z ) := | y k | n − 2 v k ( | y k | z ) , ˆ | y k | → ∞ . We have | z | < δ 4 R k f k ( λ ( A ˆ v k ))( z ) := | y k | − 2 f ( λ ( A v k ))( z ) = | y k | − 2 , | y k | . Since ˆ v k ≤ C , we can apply gradient estimates to f k to obtain:

  20. ∀ 0 < α < β < ∞ , ∃ C ( α, β ) such that for large k , |∇ log ˆ v k ( z ) | ≤ C ( α, β ) , ∀ α < | z | < β. We know from Lemma 1 and the above v k ( z ) ≤ 1 + 5 ǫ | z | =1 ˆ min 4 , and v k ( z ) ≥ 1 + 3 ǫ | z | =1 ˆ max 2 . Passing to subsequence, for some 0 < v ∗ ∈ C 0 , 1 loc ( R n \ { 0 } ), loc ( R n \ { 0 } ) , ∀ 0 < α < 1 , in C 1 ,α v ∗ v k → ˆ ˆ and v ∗ satisfies in viscosity sense R n \ { 0 } . λ ( A ˆ v ∗ ) ∈ ∂ Γ ,

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend