adaptive wavelet algorithms
play

Adaptive wavelet algorithms with truncated residuals Tsogtgerel - PowerPoint PPT Presentation

Adaptive wavelet algorithms with truncated residuals Tsogtgerel Gantumur IHP Breaking Complexity Meeting 14 September 2006 Vienna Contents Elliptic boundary value problem A convergent adaptive Galerkin method Complexity analysis A method


  1. Adaptive wavelet algorithms with truncated residuals Tsogtgerel Gantumur IHP Breaking Complexity Meeting 14 September 2006 Vienna

  2. Contents Elliptic boundary value problem A convergent adaptive Galerkin method Complexity analysis A method with truncated residuals

  3. Elliptic boundary value problem • H := H 1 0 (Ω) • A : H → H ′ linear, self-adjoint, H -elliptic ( � Av , v � ≥ c � v � 2 v ∈ H ) H ( f ∈ H ′ ) Find u ∈ H s.t. Au = f • Example: Reaction-diffusion equation H = H 1 0 (Ω) � ∇ u · ∇ v + κ 2 uv � Au , v � = Ω

  4. Equivalent discrete problem [Cohen, Dahmen, DeVore ’01, ’02] • Wavelet basis Ψ = { ψ λ : λ ∈ ∇} of H • Stiffness A = � A ψ λ , ψ µ � λ,µ and load f = � f , ψ λ � λ Linear equation in ℓ 2 ( ∇ ) Au = f , A : ℓ 2 ( ∇ ) → ℓ 2 ( ∇ ) SPD and f ∈ ℓ 2 ( ∇ ) • u = � λ u λ ψ λ is the solution of Au = f • � u − v � ℓ 2 � � u − v � H with v = � λ v λ ψ λ

  5. Galerkin solutions 1 • | | | · | | | := � A · , ·� 2 is a norm on ℓ 2 • Λ ⊂ ∇ P Λ := I ∗ • I Λ : ℓ 2 (Λ) → ℓ 2 ( ∇ ) incl., Λ • A Λ := P Λ AI Λ : ℓ 2 (Λ) → ℓ 2 (Λ) SPD • f Λ := P Λ f ∈ ℓ 2 (Λ) Lemma A unique solution u Λ ∈ ℓ 2 (Λ) to A Λ u Λ = f Λ exists, and | | | u − u Λ | | | = v ∈ ℓ 2 (Λ) | | | u − v | | | inf

  6. Galerkin orthogonality • supp w ⊂ Λ , A Λ u Λ = f Λ • � f − Au Λ , v Λ � = 0 for v Λ ∈ ℓ 2 (Λ) | 2 = | | 2 + | | 2 | | | u − w | | | | u − u Λ | | | | u Λ − w | | •

  7. Error reduction | 2 = | | 2 − | | 2 | | | u − u Λ | | | | u − w | | | | u Λ − w | | Lemma [CDD01] Let µ ∈ ( 0 , 1 ) , and Λ be s.t. � P Λ ( f − Aw ) � ≥ µ � f − Aw � Then we have � 1 − κ ( A ) − 1 µ 2 | | | | u − u Λ | | | ≤ | | u − w | | |

  8. Ideal algorithm SOLVE [ ε ] → u k k := 0 ; Λ 0 := ∅ do Solve A Λ k u k = f Λ k r k := f − Au k determine a set Λ k + 1 ⊃ Λ k , with minimal cardinality, such that � P Λ k + 1 r k � ≥ µ � r k � k := k + 1 while � r k � > ε

  9. Approximate Iterations Approximate right-hand side RHS [ ε ] → f ε with � f − f ε � ℓ 2 ≤ ε Approximate application of the matrix APPLY A [ v , ε ] → w ε with � Av − w ε � ℓ 2 ≤ ε Approximate residual RES [ v , ε ] := RHS [ ε/ 2 ] − APPLY A [ v , ε/ 2 ]

  10. Best N -term approximation Given u ∈ H , approximate u using N wavelets �� � Σ N := a λ ψ λ : #Λ ≤ N , a λ ∈ R λ ∈ Λ • Σ N is a nonlinear manifold

  11. Nonlinear vs. linear approximation in H t (Ω) Using wavelets of order d Nonlinear approximation If u ∈ B t + ns 2 + s for some s ∈ ( 0 , d − t ( L p ) with 1 p = 1 n ) p ε N = dist ( u , Σ N ) � N − s Linear approximation If u ∈ H t + ns for some s ∈ ( 0 , d − t n ] , uniform refinement ε j = � u j − u � � N − s j • [Dahlke, DeVore] : u ∈ B t + ns ( L p ) \ H t + ns "often" p

  12. Approximation spaces • Approximation space A s := { v ∈ H : dist ( v , Σ N ) � N − s } • Quasi-norm | v | A s := � v � H + sup N ∈ N N s dist ( v , Σ N ) ( L p ) ⊂ A s with 1 • B t + ns p = 1 2 + s for s ∈ ( 0 , d − t n ) p

  13. Complexity of the problem • U : f �→ ˜ algorithm for solving Au = f u • cost ( U , F ) := sup f ∈ F cost ( U , f ) • e ( U , F ) := sup f ∈ F � U ( f ) − u � H • comp ( ε, F ) := inf { cost ( U , F ) : over all U s.t. e ( U , F ) ≤ ε } r := { v ∈ A s : | v | A s ≤ r } • B s • U ( f ) lin. comb. of N wavs. ⇒ cost ( U , f ) � N Since v ∈ A s ⇔ dist ( v , Σ N ) � N − s | v | A s , we have r )) � r 1 / s ε − 1 / s comp ( ε, A ( B s

  14. Requirements on the subroutines Assume: u ∈ A s for some s ∈ ( 0 , d − t n ) Complexity of RHS RHS [ ε ] → f ε terminates with � f − f ε � ℓ 2 ≤ ε • # supp f ε � ε − 1 / s | u | 1 / s A s • cost � ε − 1 / s | u | 1 / s A s + 1 Complexity of APPLY A For # supp v < ∞ APPLY A [ v , ε ] → w ε terminates with � Av − w ε � ℓ 2 ≤ ε • # supp w ε � ε − 1 / s | v T Ψ | 1 / s A s • cost � ε − 1 / s | v T Ψ | 1 / s A s + # supp v + 1

  15. The subroutine APPLY A • Ψ is piecewise polynomial wavelets that are sufficiently smooth and have sufficiently many vanishing moments • A is either differential or singular integral operator Then we can construct APPLY A satisfying the requirements. Ref: [CDD01], [Stevenson ’04], [Gantumur, Stevenson ’05,’06], [Dahmen, Harbrecht, Schneider ’05]

  16. Optimal expansion Lemma [Gantumur, Harbrecht, Stevenson ’05] r and µ ∈ ( 0 , κ ( A ) − 1 Let u ∈ B s 2 ) . Then the smallest set Λ ⊃ supp w with � P Λ ( f − Aw ) � ≥ µ � f − Aw � satisfies #Λ − # supp w � r 1 / s � f − Aw � − 1 / s

  17. Optimal complexity Theorem [GHS05] SOLVE [ ε ] → w terminates with � f − Aw � ℓ 2 ≤ ε . Whenever r with s ∈ ( 0 , d − t u ∈ B s n ) , we have • # supp w � r 1 / s ε − 1 / s • cost � r 1 / s ε − 1 / s Further result • Can be extended to mildly nonsymmetric and indefinite problems [Gantumur ’06]

  18. Sketch of a proof K � #Λ K + 1 = #Λ k + 1 − #Λ k k = 0 K r 1 / s � � f − Au k � − 1 / s � k = 0 r 1 / s � f − Au K � − 1 / s � r 1 / s ε − 1 / s <

  19. Algorithm with truncated residuals [Harbrecht, Schneider ’02], [Berrone, Kozubek ’04] SOLVE [ ε ] → u k k := 0 ; Λ 0 := ∅ do Solve A Λ k u k = f Λ k r ⋆ k := P Λ ⋆ k ( f − Au k ) determine a set Λ k + 1 ⊃ Λ k , with minimal cardinality, such that � P Λ k + 1 r ⋆ k � ≥ µ � r ⋆ k � k := k + 1 while � r ⋆ k � > ε

  20. Error reduction • r ⋆ k = P Λ ⋆ k ( f − Au k ) truncated residual • r k = f − Au k full residual Suppose Λ ⋆ k = V (Λ k ) is such that � P Λ ⋆ k ( f − Au k ) � ≥ η � f − Au k � then we have � P Λ k + 1 r k � = � P Λ k + 1 r ⋆ k � ≥ µ � r ⋆ k � ≥ µη � r k � → error reduction

  21. Cardinality of expansion ˜ Λ = V (Λ , ¯ Λ) , Λ ⊂ ¯ Λ trees • | | | u ˜ Λ − u Λ | | | ≥ η | | | u ¯ Λ − u Λ | | | • Λ ⊂ ˜ Λ ⊆ V (Λ , ∇ ) • # V (Λ , ∇ ) � #Λ • #(˜ Λ \ Λ) � #(¯ Λ \ Λ) Lemma r and µ ∈ ( 0 , ηκ ( A ) − 1 2 ) . Then with Λ ⋆ = V (Λ , ∇ ) , the Let u ∈ B s smallest tree ˘ Λ ⊃ Λ with Λ r ⋆ � ≥ µ � r ⋆ � � P ˘ satisfies #(˘ Λ \ Λ) � r 1 / s � u − u Λ � − 1 / s

  22. Optimal convergence rate Theorem SOLVE [ ε ] → w terminates with � u − w � ℓ 2 � ε . Whenever u ∈ B s r with s ∈ ( 0 , d − t n ) , we have • # supp w � r 1 / s ε − 1 / s • cost � r 1 / s ε − 1 / s

  23. Activable sets Λ ⋆ = V (Λ , ∇ ) : • #Λ ⋆ � #Λ • � P Λ ⋆ ( f − Au Λ ) � ≥ η � f − Au Λ � [Berrone, Kozubek ’04]: • For λ ∈ Λ , add µ to Λ ⋆ if ψ µ intersects with a contracted support of ψ λ and | µ | = | λ | + 1

  24. FEM error estimators [Verfürth], [Stevenson ’04], [Dahmen, Schneider, Xu ’00], [Bittner, Urban ’05] • f ∈ L 2 (Ω) • S := span { ψ λ : λ ∈ Λ } • T mesh corresponding to S E T ( w ) � � f − Aw � H − 1 (Ω) for w ∈ S if • Λ is a graded tree • Duals ˜ Ψ are compactly supported

  25. Saturation [Verfürth], [Morin, Nochetto, Siebert ’00], [Stevenson ’04], [Mekchay, Nochetto ’04] With S ⋆ = span { ψ λ : λ ∈ Λ ⋆ ⊃ Λ } E T ( w ) � � u S ⋆ − w � H 1 (Ω) for w ∈ S if • f is a piecewise polynomial w.r.t. T • “Bubble functions” are in S ⋆ , i.e., duals ˜ Ψ are compactly supported � P Λ ⋆ ( f − Au Λ ) � � u S ⋆ − u S � H 1 (Ω) � E T ( u S ) � � � f − Au S � H − 1 (Ω) � f − Au Λ � �

  26. Activable sets Λ ⋆ = V (Λ , ∇ ) : • For ∆ ∈ T , add µ to Λ ⋆ if ˜ ψ µ intersects with ∆ and | µ | ≤ | λ | + N

  27. References [GHS05] Ts. Gantumur, H. Harbrecht, R.P . Stevenson. An optimal adaptive wavelet method without coarsening of the iterands. Technical Report 1325, Utrecht University, March 2005. To appear in Math. Comp. . [Gan06] Ts. Gantumur. Adaptive wavelet algorithms for solving operator equations. PhD thesis. Utrecht University. To appear. This work was supported by the Netherlands Organization for Scientific Research and by the EC-IHP project “Breaking Complexity”.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend