condition condition ds v ds v then s s proof in happel
play

= condition condition dS v dS v Then S S - PowerPoint PPT Presentation

Navier Navier- -Stokes Stokes Creeping Flow Creeping Flow Minimum Energy Minimum Energy Point Force Solution Point Force Solution General Solution General Solution Faxen Faxen Law Law


  1. � Navier � Navier- -Stokes Stokes � Creeping Flow � Creeping Flow � Minimum Energy Minimum Energy � � Point Force Solution Point Force Solution � � General Solution General Solution � � Faxen � Faxen Law Law � Nonspherical � Nonspherical Particles Particles � Oblate Ellipsoids � Oblate Ellipsoids � Porolate � Porolate Ellipsoids Ellipsoids ME 637 ME 637 G. Ahmadi G. Ahmadi Minimum Energy Minimum Energy − ∇ + µ ∇ + ρ = 2 v p f 0 Dissipation Theorem Dissipation Theorem ∇ = 2 Helmhotz Helmhotz p 0 ∇ v ⋅ = 0 ( ) ( ) The dissipation rate in creeping flow is less The dissipation rate in creeping flow is less Reciprocity Reciprocity ′ , ′ Let Two Let Two v , τ v τ Solution Solution than any other incompressible, continuous than any other incompressible, continuous Theorem Theorem motion consistent with the same boundary motion consistent with the same boundary ∫ ∫ ′ ′ ⋅ ⋅ = ⋅ ⋅ condition condition dS τ v dS τ v Then S S Proof in Happel Proof in Happel and Brenner and Brenner Proof in Happel Happel and Brenner and Brenner Proof in ME 637 ME 637 G. Ahmadi G. Ahmadi 1

  2. Minimum Energy Minimum Energy Stokes Stokes ( ) ij = = µ ∇ + δ δ 2 τ T i 0 P T , Dissipation Theorem Dissipation Theorem Equation j , i ij ij Equation [ ] ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ′ ′ ′ ′ ′ ′ = − ρ + τ − − − ⎡ ⎤ r r r r r r r r r r v T f dV T R v dS r r 1 = i ij jk ki ijk k j Solution- -3D 3D = δ + Solution i j P i V S T ⎢ ⎥ π i πµ 3 ij ij 4 r 2 8 r ⎣ r ⎦ 3 r r r ( ) = r i j k R π ijk 5 4 r ⎡ ⎤ r r 1 r Solution- Solution -2D 2D = − δ + = i j i T ln r P ⎢ ⎥ Then [ ] ij πµ ij i π ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 ⎣ ⎦ ∫ ∫ 4 r 2 r ′ ′ ′ ′ ′ ′ = − ρ + τ − + µ − r r r r r r r r r r p P f dV P 2 v P dS i i ij j j j , i i V S ME 637 ME 637 G. Ahmadi G. Ahmadi ( ) ∞ Lamb ( ) In an Unbounded Flow, In an Unbounded Flow, Lamb ρ = δ ∑ ( ) r = − − = + θ φ f F p P n n 1 P A r B r Y , n n n n nm For a point Force For a point Force i i = n 0 ∂ ⎛ ∂ ⎞ ∂ ⎛ ∂ ⎞ ∂ 2 1 1 1 ∇ = + θ + Stokeslet Stokeslet 2 ⎜ 2 ⎟ ⎜ ⎟ sin r ∂ ∂ θ ∂ θ ∂ θ θ ∂ ϕ 2 ⎝ ⎠ 2 ⎝ ⎠ 2 2 2 sin sin r r r r r ( ) F ⎡ + rr ⎤ i = v F T r ( ) ( ) ( ) = ⋅ θ φ = φ + φ θ v I m Y , C cos m D sin m P cos j ij ⎢ ⎥ mn mn mn n πµ ⎣ 2 ⎦ 8 r r n = m = 0 , 1 , 2 ,..., n 0 , 1 , 2 ,... ⋅ ( ) ( ) ( ) F r Then ∞ ⎡ + ∇ − ⎤ 2 r = ( ) ( ) n 3 r P 2 n P ∑ p r F P r = = ∇ × ξ + ∇ Φ + v r n n ⎢ ⎥ p ( )( ) n n µ + + i i ⎣ 2 n 1 2 n 3 ⎦ π = 3 n 0 4 r Spherical Harmonics Spherical Harmonics ME 637 ME 637 G. Ahmadi G. Ahmadi 2

  3. Torque For nonuniform For nonuniform Torque Drag on an Drag on an U velocities velocities Axisymmetric Body Axisymmetric Body ⎛ ⎞ 1 = πµ ∇ × − T 0 3 ⎜ v ω ⎟ 8 R | ∞ [ ] o ⎝ ⎠ 2 = − + µ ( ) τ I d p 2 = ∇ + ∇ T d v v Force z Force ρ n ⎡ ⎤ 1 ( ) = πµ − + ∇ F v U 2 2 v ∫ 6 R | R | = ⋅ ⎢ ⎥ F dS τ ∞ ∞ o o ⎣ ⎦ 6 s S ⎛ ⎞ ( ) 2 ∫ 20 R = × ⋅ r dS τ = π µ ⎜ + ∇ ⎟ Stresslet Stresslet S d 3 2 T R 1 ⎜ ⎟ o 3 ⎝ 10 ⎠ S ME 637 ME 637 G. Ahmadi G. Ahmadi Drag on an ∫ ∫ Drag on an = ⋅ = ⋅ ⋅ = ⋅ ⋅ F e dS τ e n τ e F dS z ρ Flow for a Flow for a 2 F z F z z z z S S ψ = = − Axisymmetric Body Body Axisymmetric z p Point Force Point Force πµ 8 r π = πρ 3 dS 2 ds 4 r ψ = ρ + 2 2 2 r r z ∂ ∂ ∂ ∂ ⎛ ∂ ψ ⎞ µ ⎛ ⎞ ⎛ ⎞ v v v v 1 Point Point = πµ ⋅ = − + µ + + µ − = − − µ ∇ ⎜ ⎟ + ψ n τ n ⎜ n n s n ⎟ s ⎜ s n ⎟ n s 2 p 2 p 2 E F 8 lim ⎜ ⎟ ∂ ∂ ∂ ∂ ρ ∂ ρ ⎝ ⎠ ⎝ ⎠ Particle Particle n s n s ⎝ s ⎠ ρ z 2 → ∞ r ( ) ψ − ψ r ∂ ⎛ ψ ⎞ 2 Fluid not at Fluid not at E = πµ Drag Force ∞ Drag Force ∫ ⎜ ⎟ = µπ ρ F 8 lim 3 F dS ⎜ ⎟ ∂ ρ z 2 Z ρ n ⎝ ⎠ rest far away 2 rest far away → ∞ r ME 637 ME 637 G. Ahmadi G. Ahmadi 3

  4. ψ = E 4 Boundary Conditions Boundary Conditions ⎧ = ξ θ φ ⎫ U 0 x c cosh sin cos ⎪ ⎪ = ξ θ φ ⎨ ⎬ y c cosh sin sin ⎪ ⎪ z = ξ θ ⎩ z c sinh cos ⎭ ( ) ξ = ξ o λ = λ ξ = ξ ψ = 0 0 0 λ = ξ a sinh ∞ > λ ≥ 0 b ∂ ψ Let Let ( ) = λ = λ ξ = ξ 0 ζ = θ cos ≥ ζ ≥ − 1 1 ∂ λ 0 0 ρ = + = ξ θ = λ + − ζ 2 2 2 2 x y c cosh sin c 1 1 ( )( ) 2 λ or ξ → ∞ 1 Uc ψ → ρ = λ + − ζ 2 2 2 U 1 1 2 2 = c λζ z ME 637 ME 637 G. Ahmadi G. Ahmadi ( ) ( ) Assumed Assumed ∂ ∂ ∂ ∂ ψ = − ζ λ 2 Boundary Conditions Boundary Conditions 1 g Noting = λ + = − − ζ Noting 2 2 Solution Solution 1 1 ∂ ξ ∂ λ ∂ θ ∂ ζ ( ) [ ( ) ] ( ) ⎟ ⎛ ⎞ 1 1 ψ = − ζ − λ + λ − λ + − λ + λ + ⎜ 2 2 1 2 1 C C 1 cot C 1 1 2 3 ∂ ∂ ∂ ⎝ ⎠ 2 2 2 2 1 = − + 2 E ∂ ρ ρ ∂ ρ ∂ 2 2 ( ) z ⎧ ⎫ ⎡ ⎤ λ λ − 2 1 − − λ 1 ⎪ ( ) ( 0 ) ⎪ ⎢ ⎥ cot Leads To Leads To λ + λ + ⎪ 2 2 ⎪ 1 1 1 ⎣ ⎦ Solution Solution ψ = ρ − 2 0 U ⎨ 1 ( ) ⎬ ⎡ ⎤ λ λ − 2 2 ⎪ 1 ⎪ − − λ 1 ( 0 ) ( 0 ) ⎡ ⎤ ⎢ ⎥ cot ) ( ) ∂ ( ) ∂ 2 2 1 ⎪ ⎪ λ + λ + 0 2 2 = λ + + − ζ 1 1 2 2 2 ⎩ ⎣ ⎦ ⎭ ( E 1 1 ⎢ ⎥ 0 0 λ + ζ ∂ λ ∂ ζ 2 2 2 2 2 c ⎣ ⎦ λ = sinh ξ 0 0 ME 637 ME 637 G. Ahmadi G. Ahmadi 4

  5. ( ) = − πµ Drag Drag λ ⎡ λ − ⎤ 2 F 6 aUK 1 Solution for Solution for − − λ 1 ( ) ( 0 ) ⎢ ⎥ cot Z λ + λ + Oblate Oblate 2 2 1 ⎣ 1 ⎦ 1 ψ = − ρ 2 0 ( ) U Spheroids Spheroids ⎡ ⎤ λ λ − 2 2 1 − moving in a moving in a − λ ( ) ( ) 1 0 0 cot ⎢ ⎥ 1 λ + λ + 0 2 2 stationary fluid stationary fluid 1 ⎣ 1 ⎦ = K 0 0 [ ] ( ) ⎧ ⎫ 3 − λ + λ − λ − λ 2 2 1 ⎨ ⎬ 1 1 cot 0 0 0 0 ⎩ ⎭ Drag Drag 4 λψ πµ 8 cU = πµ b 1 F 8 c lim = − ( ) F λ = = z ρ 2 = − λ → ∞ λ − λ − − λ 2 2 z 2 1 c a b 1 cot o − c 2 0 0 0 ( a / b ) 1 = − πµ F 6 aUK Z ME 637 ME 637 G. Ahmadi G. Ahmadi z = ξ θ ψ U ⎧ ⎫ x c sinh sin cos ρ λ 3 ⎛ ⎞ U ⎪ ⎪ − 1 λ 0 → ψ = − + λ ⎜ ⎟ 0 cot = ξ θ ψ ⎨ ⎬ y c sinh sin sin π λ + ⎝ 2 ⎠ 1 U ⎪ ⎪ = ξ θ ⎩ z c cosh cos ⎭ τ = τ 0 Let Let a a ζ = θ τ = ξ b cos cosh = − µ τ = F z 16 aU ξ = Drag Drag const const ME 637 ME 637 G. Ahmadi G. Ahmadi 5

  6. ( ) = − πµ ⎡ ⎤ τ + ⎡ τ ⎤ 2 Solution F 6 bUK Solution 1 Drag Drag − τ − 0 1 ⎢ ( ) ⎥ coth ( ) ⎢ ⎥ z τ − τ − 2 2 ⎣ ⎦ ⎣ 1 ⎦ 1 1 ψ = − ρ 0 2 U ( ) ⎡ τ + ⎤ ⎡ ⎤ τ 2 2 1 − − τ − [ ( ) ] 1 ⎧ ⎫ ( 0 ) 1 ( ) ⎥ ⎢ ⎥ coth ⎢ 3 = τ − τ + − τ − τ τ − τ − 2 2 1 0 ⎨ ⎬ 2 2 K 1 1 coth ⎣ 1 ⎦ ⎣ 1 ⎦ 0 0 0 0 0 0 ⎩ ⎭ 4 πµ 8 cU = − Drag Drag ( ) F = − 2 2 c a b − z τ + τ − τ πµ 2 1 1 coth 4 U = − 0 0 0 F a Elongated Elongated ⎛ ⎞ Z a 1 + − ⎜ ⎟ Rode Rode ln ln 2 a 1 τ = ξ = = ⎝ ⎠ cosh b 2 o o − c 2 1 ( b / a ) ME 637 ME 637 G. Ahmadi G. Ahmadi � Navier Navier- -Stokes Stokes � � Creeping Flow Creeping Flow � � Minimum Energy Minimum Energy � � Point Force Solution � Point Force Solution � � General Solution General Solution � Faxen � Faxen Law Law � Nonspherical Nonspherical Particles Particles � � Oblate Ellipsoids Oblate Ellipsoids � � Porolate Porolate Ellipsoids Ellipsoids � ME 637 ME 637 G. Ahmadi G. Ahmadi 6

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend