second order conformally invariant elliptic equations
play

Second order conformally invariant elliptic equations Yanyan Li - PowerPoint PPT Presentation

Second order conformally invariant elliptic equations Yanyan Li Rutgers University May 22, 2017. ICTP, Trieste, Italy Yamabe problem 4 ( M n , g ), n 3, Riemannian, compact, ? n 2 g ) such g g ( g = u that g


  1. Second order conformally invariant elliptic equations Yanyan Li Rutgers University May 22, 2017. ICTP, Trieste, Italy

  2. • Yamabe problem 4 ( M n , g ), n ≥ 3, Riemannian, compact, ∃ ? ˜ n − 2 g ) such g ∼ g (˜ g = u that g ≡ Constant . R ˜ • PDE: n − 2 n +2 4( n − 1) R g u = ¯ n − 2 , − ∆ g u + Ru u > 0 , on M , ¯ R = − 1 , 0 , 1.

  3. • Einstein-Hilbert functional: � 2 − n E ( g ) = Vol ( g ) R g dv g . n M • Euler-Lagrange equation: Ric g = λ g .

  4. • Restricting to a conformal class of metrics : 4 n − 2 g � � u ∈ C ∞ ( M ) , u > 0 � � [ g ] := g = u ˜ � 4( n − 1) R g u 2 � |∇ g u | 2 + n − 2 � dv g M Y g ( u ) ≡ E (˜ g ) = . � n − 2 �� 2 n n n − 2 dv g M u • Euler-Lagrange equation for E | [ g ] : 4 n − 2 g ) . g = λ (˜ g = u R ˜ • A critical point u leads to a solution of the PDE in u : n − 2 n +2 4( n − 1) R g u = ¯ n − 2 , − ∆ g u + u > 0 , on M , Ru ¯ R = − 1 , 0 , 1.

  5. • Three mutually exclusive cases: The conformal Laplacian: n − 2 − L g := − ∆ g + 4( n − 1) R g . n − 2 n +2 n − 2 , − ∆ g u + 4( n − 1) R g u = λ 1 ( − L g ) u u > 0 , on M . λ 1 ( − L g ) —- the sign of λ 1 ( − L g ). • Solution of the Yamabe problem: Yamabe(1960), Trudinger (1968), Aubin (1976), Schoen (1984).

  6. • Solution space. • If λ 1 ( − L g ) = 0, n − 2 − ∆ g u + 4( n − 1) R g u = 0 , u > 0 , on M . • Eigenspace for the first eigenvalue is 1 − dimensional. • Existence is also clear.

  7. • If λ 1 ( − L g ) < 0, n − 2 n +2 n − 2 , − ∆ g u + 4( n − 1) R g u = − u u > 0 , on M . • Uniqueness of solution — maximum principle. u = 1 • Existence is also clear: u = ǫ > 0 subsolution, ¯ ǫ supersolution.

  8. • If λ 1 ( − L g ) > 0, n − 2 n +2 n − 2 , − ∆ g u + 4( n − 1) R g u = u u > 0 , on M . • If ( M n , g ) ∼ ( S n , g 0 ), all solutions are known, and unique modulo conformal diffeomorphism of ( S n , g 0 ). • If ( M n , g ) not ( S n , g 0 ), solution space more complicated. • Question. { u ∈ C ∞ ( M ) | u solution } is bounded in L ∞ ( M )?

  9. Much work has been done: Yes, if ( M n , g ) is locally conformally flat. • Schoen (1991) • L. and Zhu (1999) Yes, if n = 3. • Independent works by three groups: • Druet (2004) Yes, if n ≤ 4. • Marques (2005) Yes, if n ≤ 7. • L. and Zhang (2005) Yes, if n ≤ 9. After the above: • L. and Zhang (2006) Yes, if n ≤ 11. • Khuri-Marques-Schoen (2009) Yes, if n ≤ 24. • Brendle (2009) No, if n ≥ 52. • Brendle-Marques (2009) No, if n ≥ 25. • For 8 ≤ n ≤ 24, “Yes” provided the Positive Mass Theorem.

  10. A fully nonlinear Yamabe problem • Schouten tensor: A g = ( n − 2) − 1 ( Ric g − [2( n − 1)] − 1 R g g ) , Let λ ( A g ) = ( λ 1 , · · · , λ n ) = eigenvalues of A g . Then λ 1 ( A g ) + · · · + λ n ( A g ) = R g .

  11. • Yamabe problem on ( M , g ) when λ 1 ( − L g ) > 0: Assume λ 1 ( A g ) + · · · + λ n ( A g ) > 0, ∃ ? ˜ g ∼ g such that λ 1 ( A ˜ g ) + · · · + λ n ( A ˜ g ) = 1. • A more general question on ( M , g ): Assume f ( λ ( A g )) > 0, ∃ ? g ∼ g such that f ( λ ( A ˜ ˜ g )) = 1. • A second order fully nonlinear elliptic PDE: 2 2 n n − 2 u − 1 ∇ 2 A ˜ g = − g u + ( n − 2) 2 ∇ g u ⊗ ∇ g u ( n − 2) 2 u − 2 |∇ g u | 2 2 − g g + A g .

  12. • More precisely: Let Γ ⊂ R n open,convex,symmetric cone,vertex at origin Γ n ⊂ Γ ⊂ Γ 1 n Γ n := { λ ∈ R n | λ i > 0 ∀ i } , Γ 1 := { λ ∈ R n | � λ i > 0 } i =1 f ∈ C 1 (Γ) ∩ C 0 (Γ) symmetric function f λ i > 0 in Γ ∀ i , f > 0 in Γ , f = 0 on Γ

  13. • Illuminating examples: 1 ( f , Γ) = ( σ k , Γ k ), 1 ≤ k ≤ n k � σ k ( λ ) := λ i 1 · · · λ i k , λ i 1 < ··· <λ ik the k -th elementary symmetric function Γ k : the connected component of { λ ∈ R n | σ k ( λ ) > 0 } containing the positive cone Γ n = { λ ∈ R n | λ i > 0 ∀ i }

  14. • A fully nonlinear Yamabe problem Assume λ ( A g ) ∈ Γ on M , 4 n − 2 g such that does there exist ˜ g = u f ( λ ( A ˜ g )) = 1 , λ ( A ˜ g ) ∈ Γ , on M ? • If ( f , Γ) = ( σ 1 , Γ 1 ), the Yamabe problem.

  15. • Answer is “ Yes ” if: (i) ( f , Γ), f concave, homogeneous of degree 1, ( M , g ) is locally conformally flat, 1 and k ≥ n (ii) ( f , Γ) = ( σ k , Γ k ) , k 2 , 1 (iii) ( f , Γ) = ( σ k , Γ k ) , k = 2 . k • Through work of many: [Alice Chang, Gursky, Paul Yang, 2002], [Pengfei Guan, Guofang Wang, 2003], [Aobing Li, L., 2003, 2005], [Gursky, Viaclovsky, 2004, 2007], [Yuxin Ge, Guofang Wang, 2006], [Weimin Sheng, Trudinger, Xujia Wang, 2007], [Luc Nguyen, L., 2014].

  16. 1 k , Γ k ), 3 ≤ k < n • “ Open ” in particular if: ( f , Γ) = ( σ k 2 . • Answer would be “Yes” if can prove a priori estimates: For 4 n − 2 g , u > 0, g = u ˜ f ( λ ( A ˜ g )) = 1 on M implies u ≤ C on M .

  17. • Taking M = R n , or rescaling a blow up sequence of solutions of the geometric equation leads to f ( λ ( A u )) = 1 , in R n , where 2 2 n A u := − n − 2 u − n +2 ( n − 2) 2 u − 2 n n − 2 ∇ 2 u + n − 2 ∇ u ⊗ ∇ u 2 ( n − 2) 2 u − 2 n n − 2 |∇ u | 2 I , −

  18. • Caffarelli, Nirenberg, Spruck, 1985: Introduce ( f , Γ) of such type, pioneering work on existence of smooth solutions for Dirichlet problem: � f ( λ ( ∇ 2 u )) in Ω ⊂ R n , = g ( x ) , u = h ( x ) on ∂ Ω . • Equation f ( λ ( A u )) = 1 resembles the above. • Additional feature: conformal invariance of equation.

  19. In this series of lectures, we • Study estimates and raise open problems

  20. A Liouville type Theorem • Theorem 1. (L., 2006; L., Luc Nguyen, Bo Wang, 2016) 0 < u ∈ C 0 ( R n \ { 0 } ), viscosity solution of λ ( A u ) ∈ ∂ Γ in R n \ { 0 } . Then u is radially symmetric about { 0 } . • Corollary 1. 0 < u ∈ C 0 ( R n ), viscosity solution of λ ( A u ) ∈ ∂ Γ in R n . Then u ≡ u (0). Γ ⊂ R n open,convex,symmetric cone,vertex at origin Γ n ⊂ Γ ⊂ Γ 1 n Γ n := { λ ∈ R n | λ i > 0 ∀ i } , Γ 1 := { λ ∈ R n | � λ i > 0 } i =1 2 2 n A u := − n − 2 u − n +2 ( n − 2) 2 u − 2 n n − 2 ∇ 2 u + n − 2 ∇ u ⊗ ∇ u 2 ( n − 2) 2 u − 2 n n − 2 |∇ u | 2 I , −

  21. We will prove: Proposition 1. Assume Ω ⊂ R n bounded open, { P 1 , · · · , P m } ⊂ Ω. λ ( A u ) ∈ R n \ Γ in Ω , 0 < u ∈ C 2 (Ω) , 0 < v ∈ C 2 (Ω \ { P 1 , · · · , P m } ) , λ ( A v ) ∈ Γ in Ω \ { P 1 , · · · , P m } . v ≥ u on ∂ Ω . Then v ≥ u in Ω \ { P 1 , · · · , P m } .

  22. We first prove: Proposition 1 with no singularity. Assume Ω ⊂ R n bounded open. λ ( A u ) ∈ R n \ Γ , λ ( A v ) ∈ Γ in Ω , 0 < u , v ∈ C 2 (Ω) , v ≥ u on ∂ Ω . Then v ≥ u in Ω .

  23. So λ ( A w + ǫϕ ) ∈ Γ . Take ǫ i = δ i → 0, and let 2 − n − 2 w + ǫ i ϕ i = v . i Then { v i } has the needed approximation property.

  24. A calculation gives w ∇ 2 ϕ + ϕ ∇ 2 w − ∇ w · ∇ ϕ I + ǫ 2 A ϕ . � � A w + ǫϕ = A w + ǫ � � A w + 1 Replacing ∇ 2 w by w − 1 2 |∇ w | 2 I in the above, we have w ∇ 2 ϕ + |∇ w | 2 � � A w + ǫϕ = (1+ ǫ ϕ + ǫ 2 A ϕ . w ) A w + ǫ ϕ I − ∇ w · ∇ ϕ I 2 w Since ∇ 2 ϕ ( y ) = 2 δϕ ( y ) I + 4 δ 2 ϕ ( y ) y ⊗ y . ∇ ϕ ( y ) = 2 δϕ ( y ) y , w ∇ 2 ϕ + |∇ w | 2 ϕ I − ∇ w · ∇ ϕ I ≥ δϕ wI . 2 w

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend