scientific visualization
play

Scientific Visualization Dr. Ronald Peikert SciVis 2008 - - PDF document

1-1 Scientific Visualization Dr. Ronald Peikert SciVis 2008 - Introduction Spring 2008 Ronald Peikert Introduction to Scientific Visualization 1-2 Ronald Peikert SciVis 2008 - Introduction What is Scientific Visualization? In 1987,


  1. 1-1 Scientific Visualization Dr. Ronald Peikert SciVis 2008 - Introduction Spring 2008 Ronald Peikert

  2. Introduction to Scientific Visualization 1-2 Ronald Peikert SciVis 2008 - Introduction

  3. What is Scientific Visualization? In 1987, • the National Science Foundation (of the U.S.) started “Visualization in scientific computing” as a new discipline, • and a panel of the ACM coined the term “scientific visualization” Scientific visualization, briefly defined: • The use of computer graphics for the analysis and presentation of computed or measured scientific data. 1-3 Ronald Peikert SciVis 2008 - Introduction

  4. Conferences and Journals Conferences • IEEE Visualization: http://vis.computer.org • EuroVis: http://www.eurovis.org • PacificVis: http://vis.cs.ucdavis.edu/PacificVis08/ Journals: • Transactions on Visualization and Computer Graphics digital library (access from ethz.ch) : http://ieeexplore.ieee.org • Computer Graphics Forum digital library (from ethz.ch): http://www.blackwell-synergy.com/loi/cgf 1-4 Ronald Peikert SciVis 2008 - Introduction

  5. SciVis is interdisciplinary Fields of application include engineering, natural + medical sciences. Video credit: K. Ono, Nissan Research Center Image credit: J. Kniss, University of Utah Video credit: B. Jobard, CSCS Manno 1-5 Ronald Peikert SciVis 2008 - Introduction

  6. Types of data Common to all application fields: numerical datasets, providing an abstraction from the particular application. Characteristics of datasets: • dimension of domain: number of coordinates or parameters • dimension of values: scalar, vector, tensor • discrete vs. discretized data • type of discretization: (un-)structured grid, scattered data, … • static vs. time-dependent 1-6 Ronald Peikert SciVis 2008 - Introduction

  7. SciVis and InfoVis Scientific visualization is mostly concerned with: • 2, 3, 4 dimensional, spatial or spatio-temporal data • discretized data Information visualization focuses on: • high-dimensional, abstract data • discrete data • financial, statistical, etc. • visualization of large trees, networks, graphs g , , g p • data mining: finding patterns, clusters, voids, outliers 1-7 Ronald Peikert SciVis 2008 - Introduction

  8. Preview of topics 2 – Contouring and Isosurfaces • 2D contours • Marching cubes algorithm Marching cubes algorithm • Asymptotic decider algorithm • Faster methods Faster methods 1-8 Ronald Peikert SciVis 2008 - Introduction

  9. Preview of topics 3 – Raycasting • Principle • Transfer functions • Pre-integration • Optimizations Op a o s • Shear-warp factorization Video credit: P. Lacroute, Stanford 1-9 Ronald Peikert SciVis 2008 - Introduction

  10. Preview of topics 4 – Volume Rendering • Object space methods • Texture-based methods • Splatting • Cell projection Ce p ojec o Video credit: O. Staubli, ETH Zurich 1-10 Ronald Peikert SciVis 2008 - Introduction

  11. Preview of topics 5 – Vector Field Visualization • Vector fields and ODEs • Streamlines, streaklines, , , pathlines • Point location methods • Streamsurfaces 1-11 Ronald Peikert SciVis 2008 - Introduction

  12. Preview of topics 6 – Texture Advection • Line integral convolution • Lagrangian-Eulerian g g advection • Image-Based Flow Vis Video credit: R. Laramee, TU Wien 1-12 Ronald Peikert SciVis 2008 - Introduction

  13. Preview of topics 7 – Feature Extraction • Feature classification • Height ridges/valleys • Vortex core lines • Flow separation lines p • Feature tracking 1-13 Ronald Peikert SciVis 2008 - Introduction

  14. Preview of topics 8 – Vector Field Topology • Critical points and periodic orbits • Visualization algorithms g • Topological skeletons in 2D • Topology of 3D vector fields opo ogy o 3 ec o e ds • Chaotic attractors 1-14 Ronald Peikert SciVis 2008 - Introduction

  15. Preview of topics 9 – Tensor Field Visualization • Tensors • Tensor glyphs g yp • Tensor line tracking • Topology of tensor fields opo ogy o e so e ds Video credit: J. Blaas, Delft Univ. of Tech. 1-15 Ronald Peikert SciVis 2008 - Introduction

  16. Preview of topics 10 – Information Visualization • Parallel coordinates • Clustering methods g • Focus+context techniques • Linked views ed e s Video credit: F. van Ham, TU Eindhoven 1-16 Ronald Peikert SciVis 2008 - Introduction

  17. Preview of topics 11 – Visualization Systems • Application Visualization System • VTK/Paraview • Covise Image credit: J. Favre, CSCS Manno. 1-17 Ronald Peikert SciVis 2008 - Introduction

  18. Preview of topics 12 – Hot Topics in Visualization • Illustrative visualization • Multiscale, multiresolution , methods • Uncertainty visualization • Out-of-core algorithms Video credit: S. Bruckner, TU Wien Video credit: S. Bruckner, TU Wien 1-18 Ronald Peikert SciVis 2008 - Introduction

  19. Data discretizations Types of data sources have typical types of discretizations: • Measurement data: – typically scattered (no grid) • Numerical simulation data: – structured, block-structured, unstructured grids structured block structured unstructured grids – adaptively refined meshes – multi-zone grids with relative motion g – etc. • Imaging methods: – uniform grids • Mathematical functions: – uniform/adaptive sampling on demand 1-19 Ronald Peikert SciVis 2008 - Introduction

  20. Unstructured grids 2D unstructured grids: • cells are triangles and/or quadrangles • domain can be a surface embedded in 3-space (distinguish n-dimensional from n-space) 1-20 Ronald Peikert SciVis 2008 - Introduction

  21. Unstructured grids 3D unstructured grids: • cells are tetrahedra or hexahedra • mixed grids (“zoo meshes”) require additional types: wedge (3-sided prism), and pyramid (4-sided) 1-21 Ronald Peikert SciVis 2008 - Introduction

  22. Structured grids General case: curvilinear grid × × N N N • nodes given in array i j j k • cells are implicit Special case: rectilinear grid • simpler coordinate functions: ( ) ( ) = = = x x i , y y j , z z k ( ) More special: uniform grid • coordinates defined by axis-aligned bounding box (2 points) y g g ( p ) 1-22 Ronald Peikert SciVis 2008 - Introduction

  23. Scattered data Scattered data means: only nodes, no cells Typical data sources: measurement data, e.g. meteorological Options for visualization: • point-based methods (relatively few algorithms) • triangulation, e.g. constrained Delaunay, difficult in 3D • resampling on uniform grid p g g 1-23 Ronald Peikert SciVis 2008 - Introduction

  24. Elementary visualization methods Scalar fields can be visualized by plotting its function graphs: ( ) = y f x • 1D field: graph is a curve ( ) = • 2D field: graph is a height field z f x y , Easy for rectilinear grids: Painter’s algorithm (hidden surface removal in software): – Draw cells row by row, from back to front 1-24 Ronald Peikert SciVis 2008 - Introduction

  25. Elementary visualization methods Visualization by color coding: Use: 1D texture mapping! glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glTexParameteri(GL TEXTURE 1D, GL TEXTURE WRAP S, GL CLAMP); g _ _ _ _ _ _ Don't use: vertex colors + Gouraud shading! • Problem of RGB mode: interpolation in wrong space (RGB vs. color bar) p g p ( ) • Problem of color index mode: lighting not possible g g p 1-25 Ronald Peikert SciVis 2008 - Introduction

  26. Elementary visualization methods 1D t 1D textures vertex colors t t l stagnation energy 5 6 7 8 9 10 0.0 0.5 1.0 texture map 1-26 Ronald Peikert SciVis 2008 - Introduction

  27. Elementary visualization methods Transparent border color glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_BORDER_COLOR, transp); Example: vorticity magnitude vorticity magnitude on horizontal slices, high values only 1-27 Ronald Peikert SciVis 2008 - Introduction

  28. Elementary visualization methods Example: von Kármán vortex street, colored by entropy 1-28 Ronald Peikert SciVis 2008 - Introduction

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend