schr dinger s equation with random potentials
play

Schrdingers equation with random potentials Marius Beceanu Jrg - PowerPoint PPT Presentation

Schrdingers equation with random potentials Marius Beceanu Jrg Frhlich Avy Soffer Pasadena February 2015 M. Beceanu J. Frhlich A. Soffer Random Potentials 1/15 Introduction Consider the linear Schrdinger equation in R d with


  1. Schrödinger’s equation with random potentials Marius Beceanu Jürg Fröhlich Avy Soffer Pasadena February 2015 M. Beceanu J. Fröhlich A. Soffer Random Potentials 1/15

  2. Introduction Consider the linear Schrödinger equation in R d with random time-dependent potential i ∂ t ψ ( x , t ) − ∆ ψ ( x , t ) + V ω ( x ) ψ ( x , t ) = 0 , ψ ( 0 ) = ψ 0 . Here V ω := V ( x , X t ) . Conserved quantities for constant V : � R d | ψ ( x , t ) | 2 dx M [ ψ ] := � R d |∇ ψ ( x , t ) | 2 + V ( x , t ) | ψ ( x , t ) | 2 dx . E [ ψ ]( t ) := Dispersive inequalities (same with more derivatives): � ψ � L ∞ x + � P c ψ � L 2 � � ψ � 2 (Strichartz) t L 2 t L 2 d / ( d − 2 ) x � D 1 / 2 P c ψ � L 2 x ( Q ) � | Q | 1 / 2 d � ψ � 2 (local smoothing) . t L 2 Constant V : E and M conserved; P c ψ disperses. Time-dependent V : M is conserved. M. Beceanu J. Fröhlich A. Soffer Random Potentials 2/15

  3. Main result Consider the equation on R 3 (or d ≥ 3) i ψ t − ∆ ψ + V ( x , X t ) ψ + ǫ ( χ ∗ | ψ | 2 ) ψ = 0 , ψ ( 0 ) = ψ 0 given . X t standard Brownian motion on bounded subset of Riemannian manifold; nontrivial V ( x , y ) ∈ C y ( L ∞ x ∩ L 1 x ) ; Hartree-type potential with small coupling constant. For any ψ 0 ∈ L 2 and | ǫ | < ǫ ( � ψ 0 � 2 ) , there is a.s. a global solution ψ s.t. E � ψ � 2 � � ψ 0 � 2 2 . t L 6 , 2 L 2 x Moreover, if A y V ( x , y ) ∈ L ∞ y ( L 1 x ∩ L ∞ x ) , then the energy remains bounded on average: E ( �∇ ψ ω ( t ) � 2 x ) ≤ �∇ ψ 0 � 2 x + C � ψ 0 � 2 x . L 2 L 2 L 2 Model problem: − ∆ + V 0 ( x ) + g ( W t ) V 1 ( x ) , V 0 ∈ C ∞ large fixed 0 potential, W t standard Brownian motion on T 1 , V 1 perturbation, coupling g ( y ) = 0 . 1 sin ( y ) . Other simple perturbations: e.g. − ∆ + V 0 ( x ) + V 1 ( x − W t ) , rotations, dilations. Can treat the general case stated above. M. Beceanu J. Fröhlich A. Soffer Random Potentials 3/15

  4. Known results 1974 Ovchinnikov. 1985, 1986 Pillet: started the study, Feynman-Kac formula, linear L 2 wave operators. 1989, 1990 Cheremshantsev: Brownian motion over the whole space. 2009 Kang, Schenker: discrete Schrödinger, translation-invariant potential. 2010 De Roeck, Fröhlich, Pazzo: For a quantum particle interacting with infinitely many thermal reservoirs, they proved a central limit theorem, diffusive scaling for the second momentum, with no corrections, and a distribution law for finite energy states. 2013 Beceanu, Soffer: Strichartz estimates, other properties; Brownian motion on the whole space. M. Beceanu J. Fröhlich A. Soffer Random Potentials 4/15

  5. Proof outline Consider the inhomogenous linear equation with random potential V ω := V ( x , X t ) i ∂ t ψ ω − ∆ ψ ω + V ω ψ ω = Ψ ω , ψ ω ( 0 ) := ψ 0 . Define g ( x , y , t ) := E ( ψ ( x , t ) | X t = y ) , f ( x 1 , x 2 , y , t ) := E ( ψ ( x 1 , t ) ψ ( x 2 , t ) | X t = y ) . Conditional expectations of ψ , respectively of the density matrix ψ ⊗ ψ , at time t and under the condition that X t = y . M. Beceanu J. Fröhlich A. Soffer Random Potentials 5/15

  6. As shown by Pillet, i ∂ t g − ∆ x g − iA y g + V ( x , y ) g = G , g ( 0 ) := ψ 0 ( x ) µ 0 ( y ) , i ∂ t f − ∆ x 1 f + ∆ x 2 f − iA y f + ( V ⊗ 1 − 1 ⊗ V ) f = F , f ( 0 ) := ψ 0 ( x 1 ) ψ 0 ( x 2 ) µ 0 ( y ) , where µ 0 ( y ) is the initial distribution of X t , i.e. of X 0 , and G ( x , y , t ) := E (Ψ( x , t ) | X t = y ) , F ( x 1 , x 2 , y , t ) := E (Ψ( x 1 , t ) ψ ( x 2 , t ) − ψ ( x 1 , t )Ψ( x 2 , t ) | X t = y ) . M. Beceanu J. Fröhlich A. Soffer Random Potentials 6/15

  7. Feynman-Kac Pillet also proved the following Feinman-Kac-type formula: � � | ψ ω ( x , t ) | 2 | V ω ( x , t ) | dx dt = f ( x , x , y , t ) | V ( x , y ) | dx dy dt . E We compute the right-hand side by using the equation of f . The left-hand side controls Strichartz estimates: � E � ψ ω � 2 � � ψ 0 � 2 | ψ ω ( x , t ) | 2 | V ω ( x , t ) | dx dt . 2 + E t L 6 , 2 L 2 x M. Beceanu J. Fröhlich A. Soffer Random Potentials 7/15

  8. Model equation Consider the solution g to i ∂ t g − ∆ x g + iA y g + V ( x 1 , y ) g = 0 . Enough to prove that g ∈ L 2 ω L 2 t , y L 6 , 2 x . Non-triviality assumption on V : For almost every x in some open set O there exist y 1 , y 2 such that V ( x , y 1 ) � = V ( x , y 2 ) . Then − ∆ x + iA y + V has no bound states for ℑ λ ≤ 0. Proof: bound state φ ( x , y ) = ⇒ independent of y = ⇒ for each y solves ( − ∆ + V ( x , y )) φ ( x ) = λφ ( x ) . V ( x , y ) are distinct = ⇒ φ = 0 on open domain = ⇒ φ ≡ 0. M. Beceanu J. Fröhlich A. Soffer Random Potentials 8/15

  9. Theorem Let W X := � t � − 3 / 2 L ∞ t B ( X ) . Suppose T ∈ W X is s.t. lim δ → 0 � T ( ρ ) − T ( ρ − δ ) � W X = 0 . If I + ˆ T ( λ ) is invertible in B ( X ) for every λ ∈ R , then 1 + T possesses an inverse in W X of the form 1 + S. Lemma Consider the equation, for V ∈ C y ( L ∞ x ∩ L 1 x ) and nontrivial, i ∂ t f − ∆ x f + iA y f + V ( x , y ) f = 0 , f ( 0 ) = f 0 ∈ L 1 y L 2 x . Then Strichartz: � f � L 2 � � f 0 � L 2 x . t L 6 , 2 y L 2 y L 2 x Moreover, x ) � � t � − 3 / 2 � f 0 � L p � f � L p x ) . y ( L 2 y ( L 1 x ∩ L 2 x + L ∞ M. Beceanu J. Fröhlich A. Soffer Random Potentials 9/15

  10. Rewrite Duhamel’s identity symetrically I − χ t > 0 i | V | 1 / 2 ( x , y ) e it ( − ∆ x + V ( x , y )+ iA y ) | V | 1 / 2 sgn V ( x , y ) = � � − 1 . I + χ t > 0 i | V | 1 / 2 ( x , y ) e it ( − ∆ x + iA y ) | V | 1 / 2 sgn V ( x , y ) = Apply Wiener’s theorem. Leads to I − χ t > 0 i | V | 1 / 2 ( x , y ) e it ( − ∆ x + iA y + V ( x , y )) | V | 1 / 2 sgn V ( x , y ) being L 1 t , y L 2 x -bounded. Conclusion follows by Duhamel. M. Beceanu J. Fröhlich A. Soffer Random Potentials 10/15

  11. Repeat for density matrix. Let V ⊗ 1 + 1 ⊗ V = V 1 V 2 , where � � | V | 1 / 2 sgn V ⊗ 1 � 1 ⊗ | V | 1 / 2 � | V | 1 / 2 ⊗ 1 V 2 := , V 1 := . 1 ⊗ | V | 1 / 2 sgn V The free resolvent is R A ( λ ) := ( − ∆ x 1 + ∆ x 2 − iA y − λ ) − 1 . Need to prove that V 2 R A ( λ ) V 1 is L 2 -bounded and, after taking the Fourier transform, I + V 2 R A ( λ ) V 1 is invertible for every λ . Matrix form � I + T 11 � T 12 I + T = . T 21 I + T 22 M. Beceanu J. Fröhlich A. Soffer Random Potentials 11/15

  12. � � � � T 11 ) − 1 � I + i � i ( I + i � T 11 0 I T 12 I + i � T = . T 22 ) − 1 � I + i � i ( I + i � 0 T 22 T 21 I Diagonal terms are invertible by reduction to previous case: ( I + iT 11 ) − 1 = I − i χ t > 0 e it ∆ x 2 | V | 1 / 2 ( x 1 ) e it ( − ∆ x 1 + V ( x 1 , y )+ iA y ) | V | 1 / 2 sgn V ( x 1 ) . Now we need to study � � � � T 11 ) − 1 � i ( I + i � i � 0 T 12 0 S 1 =: I + i � I + =: I + S . T 22 ) − 1 � i ( I + i � i � T 21 0 S 2 0 Then � S 1 S 2 � 0 S 2 = . 0 S 2 S 1 After squaring, these off-diagonal terms are compact. One can use Fredholm’s alternative for I + S 2 = ( I − iS )( I + iS ) (same for both). Just as importantly, Wiener’s theorem applies to I + S 2 . M. Beceanu J. Fröhlich A. Soffer Random Potentials 12/15

  13. Write ( I + iT ) − 1 in terms of ( I + S 2 ) − 1 and the diagonal terms ( I + iT kk ) − 1 . Get almost all integrable components, convolved with something explicit. Use this to evaluate f . In fact much more complicated. Conclusion: � f ( x , x , y , t ) | V ( x , y ) | dx dy dt � � ψ 0 � 2 L 2 . M. Beceanu J. Fröhlich A. Soffer Random Potentials 13/15

  14. Well-posedness for Hartree with small initial data Proof: Contraction scheme. By L 2 norm conservation, a priori ψ ∈ L ∞ ω L ∞ t L 2 x . The inhomogenous source term is small in L 1 ω L 1 t J 1 x 1 , x 2 because � ( χ ∗ | ψ | 2 ) ψ ⊗ ψ � L 1 t J 1 x 1 , x 2 � � ψ � 2 x � ψ � 2 x . ω L 1 t L 6 , 2 t L 2 ω L 2 L 2 L ∞ ω L ∞ t L 6 , 2 and ψ belongs to L 2 ω L 2 by Strichartz. x M. Beceanu J. Fröhlich A. Soffer Random Potentials 14/15

  15. Thank you for your attention! M. Beceanu J. Fröhlich A. Soffer Random Potentials 15/15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend